文化大學機構典藏 CCUR:Item 987654321/32146
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 47145/51011 (92%)
造访人次 : 13898322      在线人数 : 711
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于CCUR管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/32146


    题名: Local structural evolution of Fe54C18Cr16Mo12 bulk metallic glass during tensile deformation and a temperature elevation process: a molecular dynamics study
    作者: Chen, Hui-Lung
    Su, Chia-Hao
    Ju, Shin-Pon
    Liu, Shih-Hao
    Chen, Hsin-Tsung
    贡献者: 化學系
    关键词: LENNARD-JONES CLUSTERS
    FORCE-MATCHING METHOD
    MECHANICAL-PROPERTIES
    AMORPHOUS-ALLOYS
    PLASTICITY
    LIQUID
    NI
    CRYSTALLIZATION
    BIOMATERIALS
    SIMULATIONS
    日期: 2015
    上传时间: 2016-03-10 15:08:43 (UTC+8)
    摘要: The mechanical and thermal properties of Fe54C18Cr16Mo12 bulk metallic glasses (BMGs) were investigated by a molecular dynamics simulation with the 2NN modified embedded-atom method (MEAM) potential. The fitting process of the cross-element parameters of 2NN MEAM (Fe-C, Fe-Cr, Fe-Mo, C-Cr, C-Mo, and Cr-Mo) was carried out first by the force matching method (FMM) on the basis of the reference data from density functional theory (DFT) calculations. With these fitted parameters, the structure of Fe54C18Cr16Mo12 BMG was constructed by the simulated-annealing basin-hopping (SABH) method, and the angle distribution range of the X-ray diffraction profile of the predicted Fe54C18Cr16Mo12 BMG closely matches that of the experiment profile, indicating the fitted 2NN MEAM parameters can accurately reflect the interatomic interactions of Fe54C18Cr16Mo12 BMG. The Honeycutt-Andersen (HA) index analysis results show a significant percentage of icosahedral-like structures within Fe54C18Cr16Mo12 BMG, which suggests an amorphous state. According to the tensile test results, the estimated Young's modulus of Fe54Cr16Mo12C18 bulk metallic glass is about 139 GPa and the large plastic region of the stress-strain curve shows that the Fe54C18Cr16Mo12 BMG possesses good ductility. Local strain distribution was used to analyze the deformation mechanism, and the results show that a shear band develops homogeneously with the tensile fracture angle (theta(T)) at about 50 degrees, in agreement with experimental results 45 degrees < theta(T) < 90 degrees. For the temperature elevation results, the discontinuity of the enthalpy-temperature profile indicates the melting point of Fe54Cr16Mo12C18 BMG is about 1310 K. The diffusion coefficients near the melting point were derived by the Einstein equation from the mean-square-displacement (MSD) profiles between 800-1400 K. On the basis of diffusion coefficients at different temperatures, the diffusion barriers of Fe54Cr16Mo12C18 can be determined by the Arrhenius equation. The diffusion barriers of total for Fe, Cr, Mo, C are 31.88, 24.68, 35.26, 22.50 and 31.79 kJ mol (-1), respectively. The diffusion barriers of Fe and Cr atoms are relatively lower, indicating Fe and Cr atoms more easily diffuse with the increasing temperature.
    關聯: RSC ADVANCES 卷: 5 期: 126 頁碼: 103925-103935
    显示于类别:[化學系所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML232检视/开启


    在CCUR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈