English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 47184/51050 (92%)
造訪人次 : 13968256      線上人數 : 252
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/30580


    題名: Development of cloud-based automatic virtual metrology system for semiconductor industry
    作者: Huang, Hsien-Cheng
    Lin, Yu-Chuan
    Hung, Min-Hsiung
    Tu, Chia-Chun
    Cheng, Fan-Tien
    貢獻者: Dept Comp Sci & Informat Engn
    關鍵詞: Automatic virtual metrology (AVM)
    Factory-wide deployment
    Cloud computing
    Virtualization
    Production quality prediction of wafer
    Cloud-based AVM system
    日期: 2015-08
    上傳時間: 2015-10-20 16:14:13 (UTC+8)
    摘要: Automatic virtual metrology (AVM) is the highest-level technology for virtual metrology (VM) applications from the perspective of automation, which could facilitate fast factory-wide deployment of VM systems. However, the existing AVM system suffered several limitations during its practical deployment and operation in a fab for semiconductor manufacturing. In this paper, by leveraging the advantages of cloud computing, we propose an approach of building cloud-based AVM systems, which can effectively resolve these limitations. First, a cloud-based architecture is designed based on a private cloud to virtualize all servers of the AVM system for resolving the limitations of using physical servers, such as incurring high hardware cost, occupying a lot of shop-floor space, and needing complex efforts in managing VM servers. Then, three automatic functional mechanisms (i.e., automatic-deployment mechanism, automatic-scaling mechanism, and automatic-serving mechanism) are developed in an extra server (i.e., the virtual machine administrator server) to automate the deployment of VM servers, to automatically scale out/in the number of VM servers on demand, and to automatically dispatch VM servers to serve the requested VM tasks in parallel. Such an architecture design could significantly reduce the efforts of migrating the original AVM system to the cloud. Integrated testing results show that the proposed cloud-based AVM system could successfully overcome the limitations of the existing AVM system, while demonstrating a significant performance improvement over the existing AVM system in predicting the production quality of wafers. Most existing VM-related literature focused on the development of the VM models. To our knowledge, no papers have coped with the issues of plant-wide deployment and operation of VM systems by using cloud computing. This paper could be a useful reference for industrial practitioners to construct cloud-based AVM systems. (C) 2015 Elsevier Ltd. All rights reserved.
    關聯: ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING 卷: 34 頁碼: 30-43
    顯示於類別:[資訊工程學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML450檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋