文化大學機構典藏 CCUR:Item 987654321/30169
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 47249/51115 (92%)
造访人次 : 14203020      在线人数 : 676
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于CCUR管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/30169


    题名: 運用大數據處理APT攻擊之研究
    The Study of Use Big Data Analysis System Detecting APT Attack
    作者: 陳威宏
    Chen, Wei-Hung
    贡献者: 資訊安全產業碩士專班
    关键词: 進階持續性滲透攻擊
    大數據
    Splunk
    資料探勘
    決策樹
    APT
    Big Data
    Splunk
    Data Mining
    Decision Tree
    日期: 2015-06
    上传时间: 2015-08-13 10:41:44 (UTC+8)
    摘要: 進階持續性滲透攻擊(也稱為APT)是一種在不透露自己本身下,緩慢且安靜的偷偷的連接系統得到資訊的網路攻擊。APT經常使用各種攻擊方法來獲得未經授權的系統存取,然後在整個網路中逐漸蔓延。跟傳統攻擊不同的是,它們不用於中斷服務,主要是為了竊取知識財產,敏感的內部業務資訊和法律文件或其它資料。如果系統已被攻擊成功,及時發現以減輕其影響,並進一步禁止APT擴散是很重要的。
      為提早發現APT威脅所在,本研究提出一偵測機制,運用大數據(Big Data)使用Splunk分析,再使用資料探勘技術,找出惡意的IP位置。經過實驗結果比較,決策樹是做為預測模型的最佳演算法,且在有預測模型下,偵測率提高至99%。最後本研究建立一警示機制,可達到即時偵測APT威脅的效果。
    An advanced persistent threat (also known as APT) is a deliberately slow-moving cyberattack that is applied to quietly compromise interconnected information systems without revealing itself. APTs often use a variety of attack methods to get unauthorized system access initially and then gradually spread throughout the network. In contrast to traditional attacks, they are not used to interrupt services but primarily to steal intellectual property, sensitive internal business and legal documents and other data. If an attack on a system is successful, timely detection is of paramount importance to mitigate its impact and prohibit APTs from further spreading.
    For the early detection APT threat, this study proposes a detection mechanism, using Big Data and Splunk analysis, then using data mining techniques to find malicious IP position. Through the experimental results, decision tree algorithm is used as the best prediction model, and in the predictive model, the detection rate increased to 99%. Finally, This study established an alert system, can achieve real-time threat detection APT effect.
    显示于类别:[資訊工程學系] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML408检视/开启


    在CCUR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈