文化大學機構典藏 CCUR:Item 987654321/2944
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 46962/50828 (92%)
Visitors : 12440514      Online Users : 546
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://irlib.pccu.edu.tw/handle/987654321/2944


    Title: Plasma structures of 3-meter type 1 and type 2 irregularities in nighttime midlatitude sporadic E region
    Authors: Chu Y.H.
    Wang C.Y.
    Contributors: 物理系
    Keywords: ionospheric irregularities
    plasma waves and instabilities
    interferometry
    radar atmosphere physics
    Date: 2002
    Issue Date: 2009-12-04 15:37:37 (UTC+8)
    Abstract: Although the plausible mechanisms involved in the generation of midlatitude type 1 sporadic E (Es) irregularities have been suggested, rare observational evidence is provided to validate the proposed plasma structure associated with the midlatitude type 1 Es irregularities. In this article, the type 1 echoes observed by the Chung-Li VHF radar located in the equatorial anomalous region are interferometrically analyzed and the corresponding plasma structure of the type 1 irregularities is reconstructed. We find that the plasma structure has sharp lateral and top and bottom boundaries with thickness of about 1-2 km and horizontal extent of about 3-5 km in E-W direction. Its dimension in N-S direction cannot be resolved by using interferometry technique because of considerably narrow width of expected echoing region in elevation. The observed Doppler velocity of the type 1 echoes can be as low as 220 m/s, substantially smaller than nominal ion acoustic wave speed (about 360 m/s) in Es region. The spatial structure of the concurrent type 2 irregularities is also reconstructed. The result strongly suggests that it be a well-defined thin layer with thickness of 1-2 km and horizontal extent of 9-17 km in E-W direction, very different from that of the type 1 irregularities. The whole structure of type 1 irregularities moves bodily toward east at speed of about 31 m/s, and no vertical displacement of the structure is observed. Although the movement of the layer structure of the type 2 irregularities in E-W direction is indistinct, it descends remarkably at a rate of 10.3 m/s. These features imply that for the present case the factors governing the dynamic behavior of the type 1 and type 2 irregularities are different and independent, irrespective of the fact that the clump of the type 1 irregularities separates from that of concurrent type 2 irregularities only by about 4 km in distance.
    Relation: JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS Volume: 107 Issue: A12 Article Number: 1447
    Appears in Collections:[Department of Physics ] journal articles

    Files in This Item:

    File Description SizeFormat
    index.html0KbText781View/Open


    All items in CCUR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback