English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46867/50733 (92%)
造訪人次 : 11878594      線上人數 : 681
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/29297


    題名: Going-concern prediction using hybrid random forests and rough set approach
    作者: Yeh, Ching-Chiang
    Chi, Der-Jang
    Lin, Yi-Rong
    貢獻者: 會計學系暨研究所
    關鍵詞: Going-concern prediction
    Intellectual capital
    Random forest
    Rough set theory
    日期: 2014-01-01
    上傳時間: 2015-01-28 10:49:34 (UTC+8)
    摘要: Corporate going-concern opinions are not only useful in predicting bankruptcy but also provide some explanatory power in predicting bankruptcy resolution. The prediction of a firm's ability to remain a going concern is an important and challenging issue that has served as the impetus for many academic studies over the last few decades. Although intellectual capital (IC) is generally acknowledged as the key factor contributing to a corporation's ability to remain a going concern, it has not been considered in early prediction models. The objective of this study is to increase the accuracy of going-concern prediction by using a hybrid random forest (RF) and rough set theory (RST) approach, while adopting IC as a predictive variable. The results show that this proposed hybrid approach has the best classification rate and the lowest occurrence of Types I and II errors, and that IC is indeed valuable for going-concern prediction. (C) 2013 Elsevier Inc. All rights reserved.
    關聯: INFORMATION SCIENCES 卷: 254 頁碼: 98-110
    顯示於類別:[會計學系暨研究所 ] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML379檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋