数据加载中.....
|
jsp.display-item.identifier=請使用永久網址來引用或連結此文件:
https://irlib.pccu.edu.tw/handle/987654321/29223
|
题名: | Different forms of entropy dimension for zero entropy systems |
作者: | Kuang, Rui Cheng, Wen-Chiao Ma, Dongkui Li, Bing |
贡献者: | 應數系 |
关键词: | topological entropy lower entropy dimension zero entropy systems |
日期: | 2014-04-03 |
上传时间: | 2015-01-27 10:40:14 (UTC+8) |
摘要: | The aim of this paper is to introduce the lower s-topological entropy to distinguish zero entropy systems. That this quantity is an invariant factor under topological conjugacy and a power rule is shown. Some examples are given to show that the lower entropy dimension can attain any value in (0, 1), and are different with the upper one and the entropy dimension in the sense of Bowen. A counterexample is used to indicate that the product rule does not hold, and the lower s-topological entropy of the subsystem for the non-wandering set can be strictly less than that of the system when 0 < s < 1. Finally, this study also constructs a dynamical system to show that the transitive system with zero entropy dimension may not be minimal. |
關聯: | DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL 卷: 29 期: 2 頁碼: 239-254 |
显示于类别: | [應數系] 期刊論文
|
文件中的档案:
档案 |
描述 |
大小 | 格式 | 浏览次数 |
index.html | | 0Kb | HTML | 518 | 检视/开启 |
|
在CCUR中所有的数据项都受到原著作权保护.
|