English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 47121/50987 (92%)
造訪人次 : 13821197      線上人數 : 256
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/29158


    題名: Third-order likelihood-based inference for the log-normal regression model
    作者: Tarng, Chwu-Shiun
    貢獻者: 經濟系
    關鍵詞: TAIL PROBABILITIES
    RATIO
    ANCILLARIES
    PARAMETERS
    日期: 2014-09
    上傳時間: 2015-01-21 14:09:09 (UTC+8)
    摘要: This paper examines the general third-order theory to the log-normal regression model. The interest parameter is its conditional mean. For inference, traditional first-order approximations need large sample sizes and normal-like distributions. Some specific third-order methods need the explicit forms of the nuisance parameter and ancillary statistic, which are quite complicated. Note that this general third-order theory can be applied to any continuous models with standard asymptotic properties. It only needs the log-likelihood function. With small sample settings, the simulation studies for confidence intervals of the conditional mean illustrate that the general third-order theory is much superior to the traditional first-order methods.
    關聯: JOURNAL OF APPLIED STATISTICS 卷: 41 期: 9 頁碼: 1976-1988
    顯示於類別:[經濟學系暨經濟學系碩博士班] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML412檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋