This paper examines the general third-order theory to the log-normal regression model. The interest parameter is its conditional mean. For inference, traditional first-order approximations need large sample sizes and normal-like distributions. Some specific third-order methods need the explicit forms of the nuisance parameter and ancillary statistic, which are quite complicated. Note that this general third-order theory can be applied to any continuous models with standard asymptotic properties. It only needs the log-likelihood function. With small sample settings, the simulation studies for confidence intervals of the conditional mean illustrate that the general third-order theory is much superior to the traditional first-order methods.
關聯:
JOURNAL OF APPLIED STATISTICS 卷: 41 期: 9 頁碼: 1976-1988