Mild hyperhomocysteinemia (HHcy) is a risk factor for vascular disease and is closely associated with endothelial dysfunction. Oxidative stress and decreased nitric oxide (NO) bioavailability were reported in HHcy-induced vascular injury; however, the exact relationship is not understood. We thus directly determine the production of reactive oxygen species (ROS) and NO in cultured endothelial Cells (HUVECs) to demonstrate the correlated variation between ROS and NO induced by Hcy (homocysteine), Cys (cysteine), another thiol compound, and Met (methionine), precursor of HHcy in animal study. HUVECs were treated with Hey, Cys, or Met for 0.5 or 22-24 h; ROS generation was detected by DCF fluorescence with flow cytometry and NO by chemiluminescence. In non-cytotoxic (<1.0 mM) concentration ranges, Met exerted no effects on either ROS production or NO concentration, Cys decreased ROS production and increased NO in both short-term (0.5 h) and long-term (22-24 h) treatments; Hcy, however, induced a biphasic effect on ROS production, i.e., inhibitory at 0.5 h but stimulatory at 24 h. The maximal stimulation by Hcy (0.25 mM) was significantly reduced by co-incubation (12 h) with estrogen (1 muM). Hey caused an early (0.5 h) increase of medium NO which was absent in long-term Hey treatment. The oxidative stress caused by long-term Hey incubation could be ameliorated by estrogen, consistent with earlier in vivo observations that estrogen prevents HHcy-induced injury.
關聯:
CHINESE JOURNAL OF PHYSIOLOGY Volume: 46 Issue: 3 Pages: 129-136