文化大學機構典藏 CCUR:Item 987654321/2891
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 46962/50828 (92%)
造访人次 : 12467791      在线人数 : 588
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于CCUR管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/2891


    题名: Study of the root antioxidative system of tomatoes and eggplants under waterlogged conditions
    作者: Lin, Kuan-Hung R.;Weng, Chia-Cheng;Lo, Hsiao-Feng;Chen, Jen-Tzu
    贡献者: 園藝學系
    日期: 2004
    上传时间: 2009-11-27 14:05:53 (UTC+8)
    摘要: The aim of our work was to study the response of antioxidative enzymes, and antioxidants of tomato and eggplant roots to waterlogged conditions. The roots of four entries, eggplants EG117 and EG203, and tomatoes TNVEG 6 and L4422 (Lycopersicon pimpinellifolium Mill), were subjected to seven flooding treatments. A split-plot design with three replications was used. The activity of APX in roots significantly increased during the period of continuous waterlogging. Slight increases in total ASA, reduced ASA, GSH, and total glutathione contents in the roots were also observed throughout the entire waterlogging period. However, the activities of CAT, SOD and GR, and the contents of ASA, GSSG and α-tocopherol in the roots were unaffected by waterlogging. Entries responded differently to oxidative injury according to their various antioxidative systems. The results indicate that total ASA could be involved in flooding damage to tomato roots. Overall, following the waterlogging treatments, APX activity in the eggplants was generally higher than in the tomatoes. Our work suggests that the brownish roots of tomatoes induced by flooding may be the consequence of H2O2 scavenging possibly controlled by APX activity. The H2O2 scavenging system as represented by APX was clearly limiting or less efficient in the tomatoes, leading to an accumulation of H2O2. The ability to maintain a balance between the formation and detoxification of activated oxygen species appeared likely to increase the survival potential and the tolerance of the roots against varying oxidative stress. On the basis of our observations, we conclude that increased APX activity provides plant roots with increased waterlogged stress tolerance. © 2004 Elsevier Ireland Ltd. All rights reserved.
    關聯: Plant Science Volume: 167 Issue: 2 Pages: 355-365
    显示于类别:[園藝暨生物技術學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbText647检视/开启


    在CCUR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈