English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46867/50733 (92%)
造訪人次 : 11878797      線上人數 : 733
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/2875


    題名: Isolation and characterization of thioredoxin h cDNA from sweet potato (Ipomoea batatas [L.] Lam 'Tainong 57') storage roots
    作者: Huang DJ
    Chen HJ
    Hou WC
    Lin YH
    貢獻者: 園生系
    關鍵詞: sweet potato
    thioredoxin h
    cDNA sequence
    gene expression
    recombinant protein
    日期: 2004
    上傳時間: 2009-11-27 11:52:47 (UTC+8)
    摘要: Three full-length cDNA clones, designated TRX1, TRX2, and TRX3 encoding different but similar thioredoxin h polypeptides, were isolated from sweet potato (Ipomoea batatas [L.] Lam `Tainong 57') storage roots. These three thioredoxin h clones were similar to each other and contained the canonical WCGPC active site and the important structural and functional amino acids that were conserved in thioredoxin sequences. Recombinant thioredoxin h (TRX2) overproduced in Escherichia coli (M15) was purified by Ni2+-chelated affinity chromatography. The molecular mass of TRX2 is ca. 1.4 kDa determined by SIDS-PAGE. TRX2 carries an N-terminal 17-amino acid extension enriched in hydrophobic residues. In Northern blot analysis, mRNAs corresponding to all three thioredoxin genes were found to have the highest level in the storage roots; those corresponding to TRX2 and TRX3 were detected at the next higher level in flowers. All three transcripts were detected at very low levels in sprouts of storage roots, roots, veins, and leaves. In Western blot analysis, the thioredoxins were found to have the highest level in the storage roots and veins; higher level in leaves; and very low levels in sprouts of storage root and roots. Active recombinant TRX2 protein is able to reduce the TI proteins in NTR system. Thioredoxin TRX2 was not reduced efficiently when NTR was removed from the NTR system. Three thioredoxin h genes of sweet potato storage roots display differential gene expression patterns, which may be associated with the diverse roles and functions they play in plant physiology in order to cope with particular developmental and environmental cues. (C) 2003 Elsevier Ireland Ltd. All rights reserved.
    關聯: PLANT SCIENCE Volume: 166 Issue: 2 Pages: 515-523
    顯示於類別:[園藝暨生物技術學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbText675檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋