English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46867/50733 (92%)
造訪人次 : 11882273      線上人數 : 959
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/2846


    題名: Temporal change in groundwater level following the 1999 (M-W=7.5) Chi-Chi earthquake, Taiwan
    作者: Wang CY
    Wang CH
    Kuo CH
    貢獻者: 地質系
    關鍵詞: earthequake
    groundwater
    Taiwan
    日期: 2004
    上傳時間: 2009-11-23 11:36:30 (UTC+8)
    摘要: We examine the post-seismic change in the groundwater level following the 1999 (M-w = 7.5) Chi-Chi earthquake in central Taiwan, as recorded by a network of 70 evenly distributed hydrological stations over a large alluvial fan near the epicenter. Four types of post-seismic responses may be distinguished. In type 1, the groundwater level declined exponentially with time following a coseismic rise. This was the most common response in the study area and occurred in unconsolidated sediments on the Choshui River fan. In type 2, the groundwater level rose exponentially with time following a coseismic fall. This occurred in the deformed and fractured sedimentary rocks in the foothills near the Chelungpu fault that ruptured in the Chi-Chi earthquake. In type 3, the groundwater level continued to decline with time following a coseismic fall. This also occurred in the deformed and fractured sedimentary rocks near the ruptured fault. Finally, in type 4, the groundwater level, following a coseismic rise, stayed at the same level or even rose with time before it eventually declined. This occurred mostly in unconsolidated sediments along the coast of central Taiwan and along the Peikang Stream. We analyze these post-seismic responses by using a one-dimensional model. Together with the results from well test, the analysis show that the type 1 response may be explained by an aquifer model with coseismic recharge and post-seismic subhorizontal discharge across a length of 500-5000 m; the type 2 response may be explained by a model of coseismic discharge and post-seismic recharge from surface water; the type 3 response may be explained by a model of coseismic discharge and post-seismic subhorizontal discharge across a length of 500-5000 m; and the type 4 response may be explained by a model of coseismic recharge and sustained post-seismic recharge from surface water. The characteristic time for the post-seismic changes is similar to that for the groundwater-level decline during dry seasons before the earthquake, suggesting that there was no earthquake-induced changes in the aquifer properties (i.e. hydraulic conductivity), confirming the earlier results from recession analyses of the post-seismic streamflow elsewhere after several earthquakes.
    關聯: GEOFLUIDS Volume: 4 Issue: 3 Pages: 210-220
    顯示於類別:[地質系] 期刊論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋