文化大學機構典藏 CCUR:Item 987654321/28449
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 46965/50831 (92%)
造访人次 : 12651080      在线人数 : 572
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于CCUR管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/28449


    题名: 應用資料探勘技術於旅遊景點推薦
    Applying Data Mining Techniques for Tourist Spot Recommendations
    作者: 麥瑟莉
    Indriana, Marcelli
    贡献者: 資訊管理學系
    关键词: Hybrid Recommender System
    Data Mining
    Linear Regression
    Neural Network
    Content-Based Filtering
    Collaborative Filtering
    Demographic Filtering
    日期: 2014-06
    上传时间: 2014-10-07 16:17:54 (UTC+8)
    摘要: Recommender systems have become an important research area in past few years. They have been developed for a variety of domains, especially e-commerce. Recommender systems also can be applied in tourism industry to help tourists organizing their travel plans. Recommender systems can be developed by a variety of different techniques such as Content-Based filtering (CB), Collaborative Filtering (CF), and Demographic Filtering (DF). However, each method has its own advantages and disadvantages. For this reason, many previous researches used several mixed methods with an aim to reduce the disadvantages of using a single method and get more accurate recommendations.
    In this research, we proposed a hybrid recommender system that combines the results of different recommendation methods using data mining techniques. Data mining technique is a method to dig out hidden knowledge and rules among the various items from large number of information and establish the relationship between model data attributes and categories in order to get more effective relationship model predictions.
    The experimental results showed that the proposed hybrid recommendation method outperforms each individual recommendation method in terms of five evaluation metrics.
    显示于类别:[資訊管理學系暨資訊管理研究所 ] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    fb141007161708.pdf7730KbAdobe PDF275检视/开启


    在CCUR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈