English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 47249/51115 (92%)
造訪人次 : 14196271      線上人數 : 603
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/28448


    題名: 以第一原理的計算方法探討二氧化碳在Fe(111)和W@Fe(111)表面上合成甲醇之反應
    First-Principles Calculations to Explore the Methanol Syntheses from CO2 Hydrogenation on Fe(111) and W@Fe(111) Surfaces
    作者: 陳彥勻
    Chen, Yan-Yun
    貢獻者: 化學系應用化學碩士班
    關鍵詞: Fe(111)
    W@Fe(111)
    第一原理
    二氧化碳
    甲醇
    First-Principles
    CO2
    Methanol
    日期: 2014-06
    上傳時間: 2014-10-07 16:12:44 (UTC+8)
    摘要: 二氧化碳是造成現今地球暖化的主因。由於甲醇可作為替代燃料,又用於甲醇電池,因此回收二氧化碳並將之氫化合成甲醇 (CO2 + 3H2  CH3OH + H2O) 已是一個重要的課題。本篇研究的目的,為利用不同基板,具體心立方晶格的金屬面,如 Fe(111),W@Fe(111)等的奈米粒子催化模型,並藉由CO2氫化反應形成甲醇之過程來探討吸附行為、反應機制,同時對該反應系統做詳細的電子分析。經由這些研究結果我們可以提供產業界設計出更有效率的表面基板,並提供較完整並且穩定的反應機制來將二氧化碳轉化成可用的酒精燃料,以減少溫室氣體。結果顯示在Fe(111)及W@Fe(111)表面有相似的吸附結構,在反應路徑中均不傾向將H原子氫化到O原子上。而Fe(111)與W@Fe(111)反應路徑不相同,在Fe(111)表面主要是經由產生中間物甲酸鹽類(HCOO)的路徑進行加氫合成甲醇,而在W@Fe(111)表面有利於二氧化碳的分解,也有較穩定的吸附能量。在Fe(111)和W@Fe(111)表面上最大的活化能分別是27.84和39.57 kcal/mol。為了瞭解吸附物和表面的交互作用,我們也提出電子結構等相關資訊來討論。
    Carbon dioxide is an important role to the greenhouse gas, but it is renewable. The methanol could be synthesis via CO2 hydrogenation (CO2 + 3H2  CH3OH + H2O). The methanol is a significant alternative fuels in the future, and also could be a material of Direct-methanol fuel cells. In our study, we investigated CO2 hydrogenation on the different metal surface of the body-center cubic lattices, such as Fe(111) and W@Fe(111). The reaction mechanisms, activation barrier energies, and adsorption energies of the CO2 hydrogenation are studied by VASP program. The results show the reaction processes is different on the two surface. For the Fe(111) surface, the CO2 favored to form intermediate, formate (HCOO), in the first step. However, for the W@Fe(111) surface, the carbon dioxide favored to decompose to fragments, CO + O. In the reaction process, the highest activation barrier energy is 27.84 and 39.57 kcal/mol for Fe(111) and W@F(111) surface, respectively. Although the activity energy on W@Fe(111) is higher than on Fe(111) by11.73 kcal/mol, the intermediate on the W@Fe(111) is more stable than on the Fe(111). To explore this phenomenon in detail, we study with the electron localization function (ELF), charge densite difference, and electronic local density of states (LDOS). According to our work, we expected to provide the more efficient CO2 hydrogenation method and surface for the industry and to reduce CO2 concentration in the atmosphere.
    顯示於類別:[化學系所] 博碩士論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋