文化大學機構典藏 CCUR:Item 987654321/28335
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 46962/50828 (92%)
造访人次 : 12410269      在线人数 : 1438
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于CCUR管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/28335


    题名: 以綜合式人工類神經網路方法 預測股價指數:以泰國為例
    Forecasting stock index with an integrated ANN method: A Thailand case
    作者: 周若瑄
    Kamsorn, Parichat
    贡献者: 國際企業管理學系
    关键词: forecasting stock price
    artificial neural networks
    backpropagation
    wavelet neural network
    SET index
    日期: 2014-06
    上传时间: 2014-09-30 17:14:11 (UTC+8)
    摘要: Stock price is basically sensitive, non-stationary and very noisy. Many environmental factors are the important variables in stock price change, especially in emerging markets. To forecast stock price, this study proposed the developed integration artificial neural networks (ANNs) using the Wavelet De-nosing-based Back propogation (WDBP) neural network. The main purpose of the wavelet de-composition is to classify the basic elements from the noise of the signal. The used data in this experiment were the monthly closing prices of Stock Exchange of Thailand (SET) index during January 2001 to April 2014. To show the improved integration of using WDBP method, this paper applied three accurate measures to evaluate the forecasting performance. Following this paper methodology, the investors could be guided in investment providing deviation and direction of stock indexes and maximization profits in the emerging stock market.
    显示于类别:[企業管理學系暨國際企業管理研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    fb140930171348.pdf2017KbAdobe PDF532检视/开启


    在CCUR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈