English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46962/50828 (92%)
造訪人次 : 12454803      線上人數 : 772
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/28332


    題名: 輪型機器人之模糊目標追蹤控制
    Fuzzy Target Tracking Control for Wheeled Robot
    作者: 林謙
    Lin, Cian
    貢獻者: 機械工程學系數位機電碩士班
    關鍵詞: 輪型機器人
    模糊規則庫
    LabVIEW
    影像處理
    模糊控制器
    Wheeled robot
    Fuzzy rule base
    LabVIEW
    Image processing
    Fuzzy controller
    日期: 2014-06
    上傳時間: 2014-09-30 17:08:12 (UTC+8)
    摘要: 視覺在人的生活中扮演很重要的角色,本論文旨在利用影像改善輪型機器人 ( KNR ) 之目標追蹤能力,為達成此目標,本研究將模糊理論植入影像處理中,利用模糊集合、建立模糊規則庫、模糊推理及解模糊化,設計一個簡易模糊控制器 ( Fuzzy Controller, FC ) ,此控制器之程式則在LabVIEW環境下發展,計算左右輪馬達之轉動速度,降低追蹤誤差。此研究使用LabVIEW 的Vision Acquisition及Vision Assistant做影像前置處理,因LabVIEW的精準與即時特性,已完成研究目標。本研究包括以下步驟,分述如下:
    (1) 平台建構。
    (2) 模糊控制器設計。
    (3) 撰寫LabVIEW 影像處理程式:運用LabVIEW程式上的Vision Acquisition啟動開啟機器人 ( KNR ) 上的HD攝影機,確定影像的像素及是否捕獲到影像,進一步運用Vision Assistant對影像進行前置作業(二值化)和後置作業(圖像辨識)以便取得座標值。
    (4) 撰寫模糊控制器程式:透過圖像辨識後之座標值,計算左右輪馬達之轉動速度,並以影像保持固定距離以防止物體與機器人發生衝撞,使輪型機器人具有影像追蹤的能力。
    (5) 程式除錯與功能測試。
    本研究利用LabVIEW與模糊演算方法,已完成了影像辨識與目標追蹤,並已成功地運用在輪型機器人之目標追蹤上。
    Vision plays an important role in daily life. In this thesis, the vision is sued to improve the target tracking ability of the wheeled robot (KNR). To achieve this goal, the fuzzy theory is embedded into image processing in the study. The fuzzy set, fuzzy rule base, fuzzy inference and defuzzification are utilized to design a fuzzy controller (FC). The program of the proposed controller is developed under the LabVIEW environment to calculate the speeds of right and left wheels, respectively. The Vision Acquisition and Vision Assistant packages are used to pre-process the captured image. The developing stage contains following five steps(1) Establish the wheeled robot (KNR).
    (2) Design the fuzzy controller.
    (3) Develop the image processing program under LabVIEW environment: The functions include (a) Triggering the camera of the controlled wheeled robots (KNR); (b) Capturing the image on fixed interval time; (c) Pre-processing (binary) and post-processing (pattern recognition) to obtain the axis values.
    (4) Write a fuzzy controller program: Through the coordinate values of image recognition, calculate the rotational speed of the left and right wheel motor, and to maintain a fixed distance from the image in order to prevent the occurrence of a collision object and robots, wheeled robot with the ability to make video tracking.
    (5) Program debug and test.
    In this thesis, the technologies of fuzzy theory and image processing have been combined successfully to recognize the pattern and drive the wheels of the robot. And also the LabVIEW program has been successfully executed to capture the image, access the axis values and convert driving voltages of the wheeled robot (KNR).
    顯示於類別:[機械工程系暨機械工程學系數位機電研究所] 博碩士論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋