文化大學機構典藏 CCUR:Item 987654321/28306
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 46965/50831 (92%)
造访人次 : 12647506      在线人数 : 576
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于CCUR管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/28306


    题名: 應用貝氏網路、決策樹、約略集合及倒傳遞類神經網路偵測應計項目之盈餘管理
    Applying Bayesian Network, Decision Tree, Rough Set Theory, and Back Propagation Network Analysis for Detecting Accrual Earnings Management
    作者: 汪奕丞
    Wang, Yi-Cheng
    贡献者: 會計學系
    关键词: 資料探勘
    貝氏網路
    倒傳遞類神經
    約略集合
    決策樹
    應計項目盈餘管理
    data mining
    bayesian network
    back-propagation neural network
    rough sets theory
    decision trees
    accrual earnings management
    日期: 2014-06
    上传时间: 2014-09-30 15:55:51 (UTC+8)
    摘要: 企業於財務報表上的可靠性及管理階層操縱應計項目形成的盈餘管理行為一直是會計的重大議題。以往於應計項目盈餘管理上皆是使用傳統的迴歸模式,近年來已有多位學者使用資料探勘方法針對應計項目盈餘管理做研究,準確度有所提高,但整體文獻上還不夠完整,因此本研究以資料探勘法中的決策樹及倒傳遞類神經網路來進行預測,希望能得出一個更準確地偵測模式。
    本研究嘗試以CHAID決策樹、約略集合及貝氏網路(Bayesian Networks, BN)先將變數進行第一階段的篩選,再進一步使用倒傳遞類神經網路及C5.0決策樹來建立模型檢測企業是否具有嚴重操縱盈餘的情況。而實證結果顯示,約略集合篩選方法搭配倒傳遞類神經網路的表現最佳,準確率為96.82%。
    Enterprise reliability in financial statements and management manipulated ac-cruals formed earnings management behavior has been a major topic of accounting. Previous studies in accrual earnings management are using traditional regression model. In recent years, a number of scholars have been doing research using data mining methods for accruals earnings management and accuracy was improved, but it is not enough to complete the whole literature. Therefore, this study use data mining method in the decision tree and back-propagation neural network to make predictions, hoping to achieve a more accurate detection mode.
    This study attempts to use CHAID decision trees, rough sets and Bayesian Net-work in the first stage of the variable filter. Further use of back-propagation neural network and C5.0 decision tree to modeling detect whether a company has a serious manipulation of earnings. The empirical results show that rough sets theory screening method with back-propagation neural network has the best performing, and it’s accuracy rate is 96.82%.
    显示于类别:[會計學系暨研究所 ] 博碩士論文

    文件中的档案:

    没有与此文件相关的档案.



    在CCUR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈