English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 47126/50992 (92%)
造訪人次 : 13837696      線上人數 : 394
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/27624


    題名: 資料挖掘應用在媒合系統之研究-以房屋交易媒合為例
    The Research of Applying Data Mining Techniques to Matching Systems: Using House Tradingand and Matching as an Example
    作者: 朱芳賦
    貢獻者: 資訊管理研究所
    關鍵詞: 資料挖掘
    媒合系統
    最近鄰居演算法
    可延伸標記語言
    data mining
    matching system
    nearest neighbor algorithm
    extensible markup language
    日期: 2006
    上傳時間: 2014-07-01 11:39:59 (UTC+8)
    摘要: 資料挖掘(data mining, DM)被廣泛的應用在許多領域,惟目前較少將其運用在房屋交易媒合上。本研究是將資料挖掘技術中之最近鄰居演算法(nearest neighbor algorithm, NN)運用在房屋交易媒合系統上,最近鄰居演算法是一種實用且準確率高的演算法,運用在媒合系統(matching systems)將有效的提高媒合系統的媒合能力,以輕易的讓使用者媒合到所需要的資訊。
    房市的漲跌關乎國家的經濟,許多人一生中或許只有一次購屋機會,購買房屋對大部分的人來說可以說是僅次於婚姻的人生大事,因此選擇房屋對這些人來說就像選人生的另一半一樣,為了改善目前房屋仲介網所採用傳統的條件式搜尋方式來搜尋房屋的缺點,讓使用者不至於浪費找尋時間卻無法搜尋到理想的房屋,本研究預期建立一個以資料挖掘為基礎,能符合使用者需求的線上房屋交易媒合系統,為的是讓使用者可以在最短時間內搜尋到理想的房屋,進而改善原有傳統的條件式搜尋之缺點與效率。
    Data mining techniques such as market basket analysis, case-based reasoning, automated cluster detection, and neural networks have been widely used in many areas. However, there is still lack of successful application in the area of house trading and matching so far. This research tries to apply one of the data mining techniques called the nearest neighbor algorithm to house trading and matching in order to strengthen the matching ability in house trading and matching systems. The nearest neighbor algorithm has been viewed as a practical and highly accurate method which is able to increase the accuracy and efficiency of matching systems. It can also help system users obtain the information they need more easily and promptly.
    Many people may have only one chance in his or her life to buy a house; therefore, buying a house is as important as getting married with someone. In contrast to traditional house trading and matching systems, which are normally based on whether the input conditions have been matched, this paper proposes a similarity-based house trading and matching system that compares the user’s needs to the objects or cases in the database to decide which house is most suitable for the user.
    顯示於類別:[資訊管理學系暨資訊管理研究所 ] 博碩士論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋