「晶圓測試」需要有以大量微探針所組成之探針卡做為測試機台與晶片焊墊間的測試媒 介,藉微探針與焊墊的實際接觸,獲得受測晶片的電器特性。測試過程中,微探針需通以 150mA~1A 的電流,進行導通測試,微細探針會因電熱效應而失去應有的強度,當探針接觸 到焊墊時,會因強度不足而發生「跪針」現象,或因電熱效應而發生「燒針」現象。在數 值分析上屬於「多重物理電-熱-結構」耦合分析問題。為了在設計開發階段,即能瞭解微 探針的行為與失效成因,本研究於100 年度提出三年期的專題計畫,三個年度的研究課題分 別為: (一) 垂直式晶圓探針卡之微探針 接觸實驗 與有限元素分析; (二) 垂直式晶圓探針卡之微探針 多重物理電-熱-力 耦合分析與實驗; (三) 應用基因演算法與有限元素法探討 微探針最佳化 問題。 本研究以實驗與數值方法探討晶圓測試過程微探針的「接觸針壓」與「電熱效應」,設計 製作垂直式Cobra 微探針針壓與電熱測試平台,利用高速攝影機擷取測試探針的動態影 像, 應用電腦視覺與影像方法觀察微探針的接觸過程與電熱效應。應用動態田口實驗法, 探討以接觸針壓與接觸電阻為分析特徵之最適探針設計與測試條件,並進行驗證實驗。 由模擬與實驗的分析結果可了解:Cobra 微探針於測試過程的探針的受力狀態、電氣特 徵、以及電熱效應;並結合基因演算法進行微探針設計最佳化研究;可以大幅提升微探針 的研究能量與晶圓測試探針卡的設計水準。 100 年度所提之三年期計畫,核准一年(NSC 100-2221-E-034-002),本計畫除了報告研究的執 行現況外,根據後兩年的研究內容,提出101 年專題計畫修正申請案(兩年期)。
Wafer testing requires a probe card with a mass scale needles as detecting media between the testing machine and welding pads. Electric characteristics of the examined die are detected by direct contacts between the micro-probes and welding pads. In probing process, micro-probes are conduct with 150mA~1A current for testing. Improper needle structure or testing parameter would cause ‘kneeling needle’ and ‘burning needle’ due to the needle losses its strength from the contact and electro-thermo effects. This is a multiphysics structural-electro-thermal coupled problem in numerical analysis. In order to facility micro-probe’s behavior and failed reasons, this study proposes a three-year project, the main topic are: (1) Contact experiments and finite element analyses on the micro-probe used in vertical wafer probe card. (2) Structural-electro-thermal coupled analyses and experiments on the micro-probe used in vertical wafer probe card. (3) Using genetic algorithm and finite element methodology on micro-probe design optimization. This study applies experimental and numerical methods to explore contact pressure and electrothermal effect of the micro-probe during wafer probing. A micro-probe testing platform is built for pressure and electrothermal measurements of the vertical cobra needle. Dynamic images of the examined probe are captured by a high-speed camera. The processes of probe contact and eletrothermal effect can be recorded and observed by computer vision and digital image processing methods. Taguchi’s dynamic simulation experiments are implemented to investigate the preferred designs and testing conditions based on the contact pressure and resistance of the needle, and confirmation experiments are performed. From results in simulations and experiments, the force sustaining, electric characteristics, and electrothermal effect of the examined needle during testing can be found clearly. Design optimization of the micro-probe is also conducted by genetic algorithm. The research energy and design level in micro-probe used in wafer probe card can be promoted substantially.