This article investigates the feasibility of using range-based estimators to evaluate and improve Generalized Autoregressive Conditional Heteroscedasticity (GARCH)-based volatility forecasts due to their computational simplicity and readily availability. The empirical results show that daily range-based estimators are sound alternatives for true volatility proxies when using Superior Predictive Ability (SPA) test of Hansen (2005) to assess GARCH-based volatility forecasts. In addition, the inclusion of the range-based estimator of Garman and Klass (1980) can significantly improve the forecasting performance of GARCH-t model.