This paper presents a study on the buckling and vibration of initially stressed composite plates with temperature-dependent material properties in thermal environments. The initial stress is taken to be a combination of a pure bending stress and an axial stress. The temperature distribution in the plate is assumed to be uniform and linear in the transverse direction. The governing equations including the transverse shear deformation effects are established using the variational method. The effects of various parameters on the buckling and vibration behaviors of laminated plates with respective temperature-dependent and temperature-independent material properties are investigated. The buckling load and natural frequency are sensitive to the thermal stresses and initial stresses. Numerical results reveal that temperature-dependent material properties should be considered in the buckling and vibration analysis for laminated plates under thermal conditions.