English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46962/50828 (92%)
造訪人次 : 12447854      線上人數 : 617
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/2666


    題名: Computing, artificial intelligence and information management - Strategy optimization for deductive games
    作者: Chen, Shan-Tai
    Lin, Shun-Shii
    Huang, Li-Te
    Hsu, Sheng-Hsuan
    貢獻者: 資科系
    關鍵詞: algorithm
    bulls and cows
    mastermind
    pigeonhole principle
    search strategies
    日期: 2007
    上傳時間: 2009-11-13 11:44:02 (UTC+8)
    摘要: This paper presents novel algorithms for strategy optimization for deductive games. First, a k-way-branching (KWB) algorithm, taking advantage of a clustering technique, can obtain approximate results effectively. Second, a computer-aided verification algorithm, called the Pigeonhole-principle-based backtracking (PPBB) algorithm, is developed to discover the lower bound of the number of guesses required for the games. These algorithms have been successfully applied to deductive games, Mastermind and "Bulls and Cows." Experimental results show that KWB outperforms previously published approximate strategies. Furthermore, by applying the algorithms, we derive the theorem: 7 guesses are necessary and sufficient for the "Bulls and Cows" in the worst case. These results suggest strategies for other search problems. (c) 2006 Elsevier B.V. All rights reserved.
    關聯: EUROPEAN JOURNAL OF OPERATIONAL RESEARCH Volume: 183 Issue: 2 Pages: 757-766
    顯示於類別:[資訊工程學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbText943檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋