English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46965/50831 (92%)
造訪人次 : 12646708      線上人數 : 563
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/26647


    題名: High-resolution quantitative precipitation forecasts and simulations by the Cloud-Resolving Storm Simulator (CReSS) for Typhoon Morakot (2009)
    作者: Wang, CC (Wang, Chung-Chieh)
    Kuo, HC (Kuo, Hung-Chi)
    Yeh, TC (Yeh, Tien-Chiang)
    Chung, CH (Chung, Chao-Hsuan)
    Chen, YH (Chen, Yu-Han)
    Huang, SY (Huang, Shin-Yi)
    Wang, YW (Wang, Yi-Wen)
    Liu, CH (Liu, Ching-Hwang)
    貢獻者: Dept Atmospher Sci,
    關鍵詞: Typhoon
    Morakot (2009)
    Quantitative precipitation forecasts (QPFs)
    Cloud-resolving model
    Topography
    Taiwan
    日期: 2013-12-09
    上傳時間: 2014-02-21 11:22:38 (UTC+8)
    摘要: Typhoon Morakot (2009) struck Taiwan during 7-9 August 2009, and brought extreme rainfall up to 2855 mm and the worst damages in the past 50 years. The operational models showed deficiency and serious under-prediction in rainfall amount at real time. This study demonstrates that the Cloud-Resolving Storm Simulator (CReSS), a state-of-the-art, high-resolution model, at a grid size of 3 km and starting as early as 0000 UTC 4 August, can successfully simulate and reproduce the event with high accuracy, including the distribution and timing of heavy rainfall in Taiwan. In the simulation starting at 0000 UTC 6 August, for example, the threat scores for 24-h rainfall for 8 August (with extreme amounts >1450 mm) reach 0.8-0.4 even at thresholds of 100-500 mm. This result is only possible due to small track error and the phase-locking mechanism of the Taiwan topography to heavy rainfall.

    Furthermore, real-time forecast and hindcast integrations of the CReSS model show that high-quality quantitative precipitation forecasts (QPFs) with peak total amount 67-80% of the true value are also obtained from initial conditions at 0000 UTC 6 August, which is about 2 days prior to the beginning of the heaviest rainfall in southern Taiwan. In these integrations, typhoon track errors in the global model forecasts used as boundary conditions are the major error source that prevent more ideal QPF results before and at 1200 UTC 5 August. When properly configured, it is believed that other similar cloud-resolving models can achieve comparable performance. Thus, the importance of and potential benefits from deterministic high-resolution forecasts is stressed, which may give an extended lead-time when the track error is small. With potentially longer time window for emergency action just prior to extreme rainfall events when it matters the most, such forecasts may ultimately lead to reduced losses in lives and properties. (C) 2013 Elsevier B.V. All rights reserved.
    關聯: JOURNAL OF HYDROLOGY Volume: 506 Pages: 26-41
    顯示於類別:[大氣系所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML475檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋