English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46962/50828 (92%)
造訪人次 : 12435494      線上人數 : 589
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/26065


    題名: 殺價式拍賣消費者行為之研究
    Bargain-Auction of Consumer Behavior Research
    作者: 郭文蕙
    Kuo, Wen-Hui
    貢獻者: 資訊管理學系碩士在職專班
    關鍵詞: 殺價式拍賣
    顧客價值分析模式
    資料探勘
    商業模式
    拍賣
    Bargaining Auction
    RFM
    Data Mining
    Business models
    Internet auction
    日期: 2013-06
    上傳時間: 2013-11-11 11:22:05 (UTC+8)
    摘要: 由於網路技術成熟,電子商務蓬勃的發展,其中「網路拍賣」是最被廣泛討論與研究的議題之一。然而,在過去網路拍賣商業模式的研究中,鮮少針對「殺價式拍賣」這類型的創新商業模式做較深入探討。為了瞭解此模式的消費行為,本研究將採用RFM 顧客價值評估方法與資料探勘分析,找出群集並分析其消費特性與人口屬性,初步研究結果可供後續研究者進一步擬定行銷策略,藉此成果刺激消費與開拓新客源。
    Due to the mature network technology and e-commerce to flourish in Taiwan, which "Internet auction" is the most extensive discussion and research one of the top-ics.However, the research of online auction rarely for innovative business models "Bargaining Auction "( the lowest and unique bid is the winner) to do more in-depth discussion,in the past.
    In order to further Analysis this mode of consumer behavior, the study will use the the RFM customer value assessment methods and data mining analysis to identify the cluster results.And analyze the characteristics of this variable. Customer segmentation as the number of each cluster.Then, selected and analyzed the most obvious of cluster characteristics. Construct a model which can be forecast again consumer behavior of customer.
    Preliminary findings available for future researchers to the develop marketing strategies.Take of results stimulate consumption and developing new customers.
    顯示於類別:[資訊管理學系暨資訊管理研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML113檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋