文化大學機構典藏 CCUR:Item 987654321/25695
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 46962/50828 (92%)
Visitors : 12442132      Online Users : 679
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://irlib.pccu.edu.tw/handle/987654321/25695


    Title: 整合約略集合理論與最小平方法支持向量機於國家主權信用評等
    Combining Rough Set Theory and Least Squares Support Vector Machine in Sovereign Credit Rating
    Authors: 張仲銘
    Chang, Chung Ming
    Contributors: 會計學系
    Keywords: 國家主權信用評等
    最小平方法支持向量機
    約略集合理論
    倒傳遞類神經網路
    決策樹C5.0
    sovereign credit rating
    back-propagation neural network, BPN
    least squares support vector machine, LS-SVM
    rough set theory, RST
    C5.0
    Date: 2013-06
    Issue Date: 2013-10-22 13:20:33 (UTC+8)
    Abstract: 由於重大金融危機的發生,市場參與者開始重視伴隨著高獲利而來的高風險,投資標的逐漸轉向風險與報酬較穩定之主權債券,使得作為主權債券償債能力衡量指標的國家主權信用評等相關訊息之需求與重要性與日俱增。以往國家主權信用評等之相關研究主要著重於探討影響評等之因素以及評等等級對經濟市場之影響,對於建立分類模式之研究較少,因此本文將運用機器學習技術建立二階段多類別分類模式以克服傳統統計上之諸多限制。第一階段以逐步迴歸法及約略集合理論進行變數篩選,爾後運用最小平方法支持向量機、約略集合理論、倒傳遞類神經網路與決策樹C5.0做為第二階段之分類方法,並比較分類模式之分類績效。根據研究結果顯示,整合約略集合理論與最小平方法支持向量機分類模式之分類績效最佳,另外,在評等等級BBB+、BBB與BBB-的樣本中存在著15%被高估的機率,被高估的樣本將有承擔三倍違約率的可能性,市場參與者進行投資時須特別注意。
    There have been happened many serious international financial crises, the high risk that has already been taken seriously by market participants is accompanied by the high profit, and the investment targets change into sovereign bonds. The sovereign credit rating is a indicator of the debt-paying ability about sovereign bonds publishers, and the demand of information about sovereign credit rating have become more important. Past studies about sovereign credit rating focused on variables that affect the sovereign credit rating, and how sovereign credit rating affect markets. However, studies focused on classification models are not many. Consequently, we will apply machine learning techniques to build a two-step multiclass classification models. In the first step, we use stepwise regression and rough set theory to select variables, and apply least squares support vector machine (LS-SVM), rough set theory (RST), back-propagation neural network (BPN) and C5.0 for classification in the second step, and the result indicates that the classification performance of RST+LS-SVM is the best.
    Appears in Collections:[Department of Accounting & Graduate Institute of Accounting] Thesis

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML184View/Open


    All items in CCUR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback