文化大學機構典藏 CCUR:Item 987654321/2549
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 46965/50831 (92%)
造访人次 : 12654647      在线人数 : 746
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于CCUR管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/2549


    题名: Structural and optical properties of passivated silicon nanoclusters with different shapes: A theoretical investigation
    作者: Wang, Bo-Cheng;Chou, Yu-Ma;Deng, Jin-Pei;Dung, Yu-Tsai
    贡献者: 物理系
    日期: 2008
    上传时间: 2009-11-06 13:33:15 (UTC+8)
    摘要: Optimized geometries and electronic structures of hydrogenated silicon nanoclusters, which include the T-d and I-h symmetries, have been generated by using the semiempirical AM1 and PM3 methods, the density functional theory (DFT) B3LYP method with the 6-31 G(d) and LANL2DZ basis sets from the Gaussian 03 package, and the local density functional approximation (LDA), which is implemented in the SIESTA package. The calculated diameters for these Td symmetric hydrogenated silicon nanoclusters are in the range from 6.61 angstrom (Si5H12) to 23.24 angstrom (Si281H172). For the I-h symmetry, we calculated Si20H20 and Si100H60 nanoclusters only. Theoretically, the energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) is size dependent. The calculated energy gap decreases (Si5H12: 7.65 eV to Si281H172: 3.06 eV) while the diameter of silicon nanocluster increases. By comparing different calculated results, we concluded that the calculated energy gap by B3LYP/6-31G(d)//LDA/SIESTA is close to that from experiment and that the LDA/SIESTA result underestimates the experimental value. On the contrary, the AM I and PM3 results overestimate the experimental results. For investigation of the optical properties of Si nanoclusters as a function of surface passivation, we carried out a B3LYP/6-31G(d)//LDA/SIESTA calculation of the Si-35 and Si-47 core clusters with full alkyl-, OH-, NH2-, CH2NH2-, OCH3-, SH-, C3H6SH-, and CN- passivations. The calculated optical properties of alkyl passivated Si-35 nanoclusters (Si-35(CH3)(36), Si-35(C2H5)(36), and Si-35(C3H7)(36)) are close to one another and are higher than those of oxide, nitride, and sulfide passivated Si-35 clusters. In conclusion, the alkyl passivant affects weakly the calculated optical gaps, and the electron-withdrawing passivants-generate a red-shift in the energy gap of silicon nanoclusters. A size-dependent effect is also observed for these passivated Si nanoclusters.
    關聯: JOURNAL OF PHYSICAL CHEMISTRY A Volume: 112 Issue: 28 Pages: 6351-6357
    显示于类别:[光電物理系] 期刊論文

    文件中的档案:

    没有与此文件相关的档案.



    在CCUR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈