English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46965/50831 (92%)
造訪人次 : 12645057      線上人數 : 563
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/25428


    題名: 應用物件導向影像分類於主題圖繪製之探討
    A Study of Object Oriented Classification Application on Thematic Mapping
    作者: 官群倫
    Kuan, Chun-Lun
    貢獻者: 地學研究所地理組碩士班
    關鍵詞: 物件導向影像分類
    多尺度分割
    分割尺度
    主題製圖
    裸露地
    Object-Oriented Image Classification
    Multi-resolution Segmentation
    Segmentation Scale
    Thematic Mapping
    Bare Land
    日期: 2013-06
    上傳時間: 2013-10-03 13:55:58 (UTC+8)
    摘要: 傳統像元式影像分類法 (Pixel-Based Image Classification) 利用光譜灰度值(Grey-Layer Value) 逐一對每個像元進行分類,忽略影像地物中其他空間特徵,物件導向影像分類法 (Object-Oriented Image Classification) 則是將鄰近像元依其空間關聯性,組成具空間特徵的影像物件 (Image Object),再依影像物件的分割尺度 (Segmentation Scale) 及特徵值 (Eigenvalue) 進行影像分類。本研究旨在探討裸露地影像物件分割尺度,使用多尺度分割 (Multi-Resolution Segmentation) 係依據異質性指標 (Homogeneity Criterion) 對鄰近像元或物件進行合併,尺度 (Scale) 參數為像元合併時影像物件容許的上限,此指標尚有顏色 (color)、形狀 (Shape)、緊緻度 (Compactness) 與平滑度 (Smoothness) 四種參數。本研究嘗試使用高解析度福衛二號衛星影像對裸露地進行物件導向影像分類,分類方法使用同質性 (Homogeneity) 與熵 (Entropy) 指標透過標準最近鄰(Standard Nearest Neighbor) 演算法,將分類結果對照內政部國土測繪中心之土地使用分類圖,探討影像物件在不同分割尺度參數下對影像分類結果精度之影響。相較於像元式影像分類,物件導向影像分類方法可獲得符合空間關聯之影像分類,亦容易結合地理資訊系統建置之屬性資料,更可快速製作易判釋之主題圖。
    Conventional Pixel-Based Image Classification methods use merely grey-level values to classify pixels but ignore other spatial characteristics of ground objects. Object-Oriented Image Classification method connects adjacent pixels according to their spatial relativity in order to build up image objects and then carry out image segmentation according to the segmentation scale and their eigenvalue. This study aims to discuss the segmentation scale of bare land image objects. Multi-Resolution Segmentation is taken as a main method to combine adjacent objects according to Homogeneity Criterion, and then classify those combined image objects. Scale parameters represent the maximum limit when pixels merge into image objects. There are four parameters: color, shape, compactness and smoothness. In this study, we use high-resolution Formosat-2 satellite images to execute image classification on bare land. The land-use map provided by the National Land Surveying and Mapping Center, Ministry of the Interior, is used to compare the accuracy of the classification outcome and to study the accuracy of the results of the effect of image classification under different segmentation scales. Compared to the Pixel-Based Image Classification method, the outcome of Object-Oriented Image Classification method takes spatial relations into account. In this way, the attribute data of GIS and the image classification result can be easily combined and quickly made into a thematic map.
    顯示於類別:[地理學系] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    fb141024140815.pdf7274KbAdobe PDF1200檢視/開啟
    index.html0KbHTML318檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋