English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46962/50828 (92%)
造訪人次 : 12410339      線上人數 : 1454
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/25346


    題名: 運用資料探勘技術於職棒比賽勝負預測之研究-以美國職棒大聯盟為例
    Studies on Predicting the Outcome of Professional Baseball Games with Data Mining Techniques: MLB as a Case
    作者: 馮瑞祥
    Fong, Ruei-Shiang
    貢獻者: 資訊管理學系
    關鍵詞: 類神經網路
    資料探勘技術
    比賽預測
    資料分析
    Artificial Neural Network
    Data Mining Techniques
    Game Prediction
    Data Analysis
    日期: 2013-06
    上傳時間: 2013-09-30 11:28:09 (UTC+8)
    摘要: 職棒比賽非常注重數據收集及分析,因此每場比賽都會產生大量可供分析的數據。資料探勘技術是一項可在浩瀚的資料中分析出關鍵結果的電腦分析技術,以此技術來處理職棒的資料,不但可獲佳效,更可免去人工分析所產生的錯誤。本研究目的即是利用資料探勘的技術預測美國大聯盟職棒賽事之勝負與得分。

    本研究以美國職棒大聯盟30支隊伍在2000到2012年所有例行賽賽事為研究對象,投入之變數,為各隊賽前十場比賽野手與投手各項表現之加總平均數。首先使用「皮爾森積差相關分析」除去與勝負較無相關之變數與具有複共線性之變數,以挑選出適當之投入變數,再利用「類神經網路」中的「倒傳遞網路」將挑選出之變數投入並建立模型。以前100場作為模型之訓練集,剩下62場投入模型之鑑效,取得比賽之預測比分後,再和實際比賽結果和賭盤之盤口作比較。

    實證結果利用產出之模型得到之主客隊預測比分,再與運動彩券的大小、勝分差、讓分盤口比較後,證實本研究所提出的模型有較佳的預測準確率。後續研究者或可改變投入之變數值,再代入本研究提出的模型,應可提升預測的準確率。
    Professional baseball games emphasize data collection and analysis because each game provides plenty of data that needs to be analyzed. Data mining methods involve computer analysis techniques with which a crucial outcome can be found from a huge amount of data. The data mining techniques thus can be used to efficiently analyze the data of professional baseball and also avoid the mistakes often caused by manual analysis. This study aims to predict the outcome and scores of professional baseball games in MLB.

    The data of the study are all the regular season games from 2000 to 2012 of thirty teams in MLB. The variables are the average statistics of both the fielders’ and the pitchers’ performances in the last ten games. First, we used the Pearson product-moment correlation coefficient to delete the unrelated variables and variables of multicollinearity and to select the suitable variables. Then we applied the Back Propagation Network (BPN) of the artificial neural network to build a model for the selected variables. The first 100 games served as the training set of the model while the later 62 games as the validation set. After obtaining the predicted scores of each game, we compared them to the real outcome of the games and the money line.

    After using the output model to predict the scores of the host and the guest, we further compared them with the real outcome, run line, and money line of sports gambling. The experimental results have proven that the model of this study provided better prediction accuracy. Follow-up researchers may consider using different variables for the model to improve the accuracy of the predictions.
    顯示於類別:[資訊管理學系暨資訊管理研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    fb130930112403.pdf1951KbAdobe PDF6229檢視/開啟
    index.html0KbHTML438檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋