English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46962/50828 (92%)
造訪人次 : 12385671      線上人數 : 1082
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/24434


    題名: 結合共用鄰域法與K均值法改良分類技術之研究
    Modification of the Classification Technique by Combining Shared near Neighbors and K-Means Clustering
    作者: 葉惠中
    衛強
    貢獻者: 土地資源學系
    關鍵詞: 共用鄰域法
    K-means 分類法
    分類技術
    日期: 2012~2013
    上傳時間: 2013-03-05 13:15:55 (UTC+8)
    摘要: 分類技術是資料探勘領域中一項重要且基本的分析工具,其主要目的是將空間資料區分為多個群集或類別,使得相同的群集內具有高度的相似性,而不同的群集內則具有高度的異質性。K-means 分類法是一個大家熟知的非階層演算法,該法適用於具有球狀分佈的資料。共用臨域分類法是一種非監督式演算法,該法是以密度為基礎的演算法,可以有效地處理具有非球狀群集的問題。但是共用臨域法並無疊代設計,亦即一旦資料被指定分群後,即無法將重新分類。因此本研究提出了結合共用鄰域法與 K-means 分類法之新的演算方法,同時結合兩者之優點,期能有效地改良分類技術。
    Classification technique is an important and basic analysis tool of data mining. The major purpose of cluster analysis is to partition a database to several clusters, so that data in the same cluster are similar and homogeneous, but data in the different cluster are dissimilar and heterogeneous. K-means clustering is the most well-known hierarchical clustering methods, which is suitable for the dataset with the globular distribution. Shared near neighbors clustering is one of the methods of unsupervised classification, which is based on density-based algorithm. It can effectively deal with the problem of non-globular distribution. However, it does not share the design of iterative algorithm, which cannot be reclassified after each data is classed as some groups. In this study, we propose a new classification technique in order to deal with the dataset which both with globular and non-globular distribution. By combining the advantages about shared near neighbors and K-means clustering, we will to prove the accuracy and efficiency of this new classification approach.
    顯示於類別:[土地資源學系] 研究計畫

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML473檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋