文化大學機構典藏 CCUR:Item 987654321/24414
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 47225/51091 (92%)
Visitors : 14006741      Online Users : 225
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/24414


    題名: 非自治系統條件熵的分型性質
    Fractal Properties of Conditional Entropy for Nonautonomous Systems Properties of Conditional Entropy for Nonautonomous Systems
    作者: 鄭文巧
    貢獻者: 應用數學系
    日期: 2012-2013
    上傳時間: 2013-03-04 14:46:31 (UTC+8)
    摘要: 在數學模型裏經常以一個函數數列{Ti: i=1,2,3,…}來表示此非自治動力系統,進而探討其性質. 熵值的應用是由C. Shannon 在1948 年所提出,以已知不變測度 (invariant measure)信息下, 計算條件熵(conditional entropy)更能正確的預測非自治動力系統不變集合(invariant set)之大小與亂度. 熵代表系統運作的「不確定性」或「亂度」. 在非線性動力系統中, 條件熵可描述系統的穩定狀態. 維度詮釋不變集合之構造, 碎形幾何(Fractal Geometry)學作為當今世界十分風靡和活躍的新理論、新學科,它的出現,使人們重新審視這個世界.我們運用碎形幾何及條件熵方法來描述、分析大自然中複雜圖案結構穩定性. 本計劃意欲集中於正向對映非自治動力系統 (forward iterated dynamical systems), 深入探討不變集合之碎形幾何架構和條件熵理論之基本性質. 探討不變集合中碎形的特點、碎形的產生方法、碎形的度量、碎形壓縮及碎形的藝術. 更深入研究具有動力系統的軌跡函數之entropy 架構. 例如, 在機率空間和緊緻距離拓樸群空間, 兩者都有不同的entropy 定義和結構, 計劃探究尋找彼此性質和關係.
    In 1958, entropy concept was introduced from information theory into dynamical systems and ergodic theory. This value can predict the uncertainty of the system. Fractal geometry is a modern theory and can represent the complex of the graph. In the iterated systems, we would like to know the properties of the invariant set, thus, entropy and dimension can show what it means. During this project, I plan to research the relationship between conditional entropy and fractal dimension in nonautonomous dynamical systems. First we calculate the Hausdorff dimension and predict the equilibrium state, we hope to obtain some characteristics of those invariant sets. Some properties are also discussed, such as power rule, product rule and affinity. Then we plan to research the upper bound and lower bound of entropy by fractal dimension. Finally, we wish to show the variational principle if it hold, otherwise, the counterexample should be constructed to present the variational principle is not true.
    顯示於類別:[Department of Applied Mathematics] project

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML504檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback