Motivation: Differential detection on symptom-related pathogens (SRP) is critical for fast identification and accurate control against epidemic diseases. Conventional polymerase chain reaction (PCR) requires a large number of unique primers to amplify selected SRP target sequences. With multiple-use primers (mu-primers), multiple targets can be amplified and detected in one PCR experiment under standard reaction condition and reduced detection complexity. However, the time complexity of designing mu-primers with the best heuristic method available is too vast. We have formulated minimum-set mu-primer design problem as a set covering problem (SCP), and used modified compact genetic algorithm (MCGA) to solve this problem optimally and efficiently. We have also proposed new strategies of primer/probe design algorithm (PDA) on combining both minimum-set (MS) mu-primers and unique (UniQ) probes. Designed primer/probe set by PDA-MS/UniQ can amplify multiple genes simultaneously upon physical presence with minimum-set mu-primer amplification (MMA) before intended differential detection with probes-array hybridization (PAH) on the selected target set of SRP.