English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 47126/50992 (92%)
造訪人次 : 13852548      線上人數 : 249
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/24170


    題名: Mechanism and Kinetics for Ammonium Dinitramide (ADN) Sublimation: A First-Principles Study
    作者: Zhu, RS (Zhu, R.S.)
    Chen, HL (Chen, Hui-Lung)
    Lin, MC (Lin, M.C.)
    貢獻者: Dept Chem
    關鍵詞: TOTAL-ENERGY CALCULATIONS
    SET MODEL CHEMISTRY
    WAVE BASIS-SET
    THERMAL-DECOMPOSITION
    SALTS
    PHASE
    METALS
    ANION
    日期: 2012-11-08
    上傳時間: 2013-02-19 13:08:26 (UTC+8)
    摘要: The mechanism for sublimation of NH4N(NO2)(2) (ADN) has been investigated quantum-mechanically with generalized gradient approximation plane-wave density functional theory calculations; the solid surface is represented by a slab model and the periodic boundary conditions are applied. The calculated lattice constants for the bulk ADN, which were found to consist of NH4+[ON(O)NNO2](-) units, instead of NH4+[N(NO2)(2)](-), agree quite well with experimental values. Results show that three steps are involved in the sublimation/decomposition of ADN. The first step is the relaxation of the surface layer with 1.6 kcal/mol energy per NH4ON(O)NNO2 unit; the second step is the sublimation of the surface layer to form a molecular [NH3]-[HON(O)NNO2] complex with a 29.4 kcal/mol sublimation energy, consistent with the experimental observation of Korobeinichev et al.(10) The last step is the dissociation of the [H3N]-[HON(O)NNO2] complex to give NH3 and HON(O)NNO2 with the dissociation energy of 13.9 kcal/mol. Direct formation of NO2 (g) from solid ADN costs a much higher energy, 58.3 kcal/mol. Our calculated total sublimation enthalpy for ADN(s) -> NH3(g) + HON(O)NNO2) (g), 44.9 kcal/mol via three steps, is in good agreement with the value, 42.1 kcal/mol predicted for the one-step sublimation process in this work and the value 44.0 kcal/mol computed by Politzer et al.(11) using experimental thermochemical data. The sublimation rate constant for the rate-controlling step 2 can be represented as k(sub) = 2.18 x 10(12) exp (-30.5 kcal/mol/RT) s(-1), which agrees well with available experimental data within the temperature range studied. The high pressure limit decomposition rate constant for the molecular complex H3N center dot center dot center dot HON(O)NNO2 can be expressed by k(dec) = 3.18 x 10(13) exp (-15.09 kcal/mol/RT) s(-1). In addition, water molecules were found to increase the sublimation enthalpy of ADN, contrary to that found in the ammonium perchlorate system, in which water molecules were shown to reduce pronouncedly the enthalpy of sublimation.
    關聯: JOURNAL OF PHYSICAL CHEMISTRY A 卷: 116 期: 44 頁數: 10836-10841
    顯示於類別:[化學系所] 期刊論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©  2006-2025  - 回饋