English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46962/50828 (92%)
造訪人次 : 12454820      線上人數 : 775
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/23904


    題名: 影像辨識在輪型機器人之應用
    作者: 趙胤登
    貢獻者: 數位機電科技研究所
    關鍵詞: 模糊理論
    Fuzzy Inference
    圖樣辨識
    Pattern Recognition
    Labview
    不變矩
    Moment Invariant
    日期: 2012
    上傳時間: 2012-12-06 11:22:00 (UTC+8)
    摘要: 視覺在每個人的生活當中佔了很重要的角色,本文所做的基本研究可以改善輪型機器人(FESTO Robotino)之目標追蹤能力。本文在研究以下兩種法則“模糊理論”與“圖樣辨識”的結合。本研究之演算方法保有不變矩分類的優點,以模糊理論進一步修正不變矩的判斷盲點,使其誤判率降低,最後將此演算法則應用在輪型機器人(FESTO Robotino)上。本研究應用Matlab在圖像處理上的優勢,再搭配開放式Labview在控制方面的即時與精準性,完成本項成果。此項研究架構共分三步驟,分述如下:
    步驟一:以Labview在固定的間隔時間啟動輪型機器人(FESTO Robotino)上的攝影機,進行圖像捕獲。
    步驟二:利用Matlab對捕獲到的影像進行前置處理(二值化)與後置處理(圖樣辨識),並透過分類運算得到類別與位置不變矩的向量值,然後與內建的樣本圖形做最短距離分類器計算,得到不變矩相似值。
    步驟三:利用Matlab撰寫模糊控制機制,將輪型機器人(FESTO Robotino)所需要的轉彎角度計算出來後,存入文件檔案中,啟動Labview無線傳輸與輪型機器人(FESTO Robotino)進行溝通,再透過Labview抓取此檔案中的轉彎角度,然後將讀取的每一筆轉彎角度存入另一文件檔,最後,Labview再換算成馬達所需要之驅動電壓,使輪型機器人(FESTO Robotino)具有影像追蹤的能力。
    本研究已成功的利用Matlab、模糊理論與不變矩分類的辨識方法,完成了多種圖樣之辨識追蹤。且已順利地利用Labview完成影像捕獲,存取每一筆轉彎角度及輪型機器人(FESTO Robotino)驅動之介面程式開發。本研究之基本成果,日後可再增強影像前置處理機制,以增強後續的辨識能力,也可大幅提升實務應用,以解決目前服務型機器人在環境監控上之盲點,亦可提升追蹤目標物的準確性。

    Vision plays an important role in our lives and wheeled robot. However, accurate and rapid image recognition is difficult to obtain. This study develops an intelligent recognition algorithm, including image capturing, image pre-processing, fuzzy inference and pattern recognition. In the proposed recognition scheme, the advantages of moment invariant can be maintained and the bottleneck can be improved by fuzzy inference. To verify the performance of the proposed architecture, the proposed algorithm is applied to the wheeled robots (FESTO Robotino) under Matlab and Labview software packages. The developing stage contains following three steps:
    Steps 1: Utilizing Labview to start the camera of the controlled wheeled robots (FESTO Robotino) and to capture the image on fixed interval time.
    Step 2: Utilizing Matlab to pre-process (binary) and post-process (pattern recognition) the captured image. The type and location of the image can be obtained via the calculation of moment invariant and the distance comparison with the built-in samples.
    Step 3: Writing Matlab program to establish the fuzzy inference to calculate the turning angles of the controlled wheeled robot (FESTO Robotino) and save the angles into a document file. Then, the Labview’s interface program is started to execute to connect the computer and the controlled wheeled robot (FESTO Robotino) through wireless WiFi. Then, the captured turning angles are saved into another document file by Labview. Finally, the driven voltages of the motor are converted by Labview and sent to robot through WiFi.
    In this thesis, the technologies of Matlab, fuzzy inference and moment invariant has been combined successfully to classify and identify an image. And also the Labview interface program has been successfully executed to capture the image, access the turning angles and convert driving voltages of the wheeled robot (FESTO Robotino). In the future, the performance can be further enhanced by embedding additional image pre-processing mechanisms to promote the recognition capability and to improve tracking accuracy of the robot in practical application.
    顯示於類別:[機械工程系暨機械工程學系數位機電研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML656檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋