文化大學機構典藏 CCUR:Item 987654321/23854
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 46965/50831 (92%)
Visitors : 12635892      Online Users : 725
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://irlib.pccu.edu.tw/handle/987654321/23854


    Title: 基於協同過濾和雲模型的混合式推薦系統
    Authors: 林秀芬
    Contributors: 資訊管理學系
    Keywords: 協同過濾
    collaborative filtering
    稀疏性
    sparsity
    雲模型
    cloud model
    以使用者為基礎 user-based
    Date: 2011
    Issue Date: 2012-12-04 10:49:49 (UTC+8)
    Abstract: 以使用者為基礎的協同過濾(collaborative filtering)演算法是一種被廣泛使用而且有效率的推薦技術,它可以從別人的意見提供給使用者最適合的建議。雖然協同過濾技術已經成功應用在很多地方,但它有著嚴重的資料稀疏性(sparsity)問題。雲模型(cloud model)利用了雲特徵向量來代表整體的使用者的偏好來解決這個問題。以使用者為基礎(user-based)的協同過濾演算法適用在資料密集的時候,而雲模型協同過濾法在資料稀疏時較為穩定。本研究將使用一個混合式的推薦系統來整合以使用者為基礎的協同過濾演算法及雲模型協同過濾演算法的預測結果。實驗結果顯示混合式的推薦系統可以改善稀疏性的問題及改善預測的品質。
    User-based Collaborative filtering (CF), one of themost prevailing and efficient recommendation techniques, provides personalized recommendations to users based on the opinions of other users. Although the CF technique has been successfully applied in various applications, it suffers from serious sparsity problems. The cloud-model ap-proach addresses the sparsity problems by constructing the user’s global preference represented by a cloud eigenvector. The user-based CF approach works well with dense datasets while the cloud-model CF approach has a greater performance when the dataset is sparse. In this paper, we present a hybrid approach that integrates the predictions from both the user-based CF and the cloud-model CF approaches. The experimental results show that the proposed hybrid approach can ameliorate the sparsity problem and pro-vide an improved prediction quality.
    Appears in Collections:[Department of Information Management & Graduate Institute of Information Management] Thesis

    Files in This Item:

    File Description SizeFormat
    http___thesis.lib.pccu.edu.tw_cgi-bin_cdrfb3_gsweb.pdf153KbAdobe PDF218View/Open
    http___thesis.lib.pccu.edu.tw_cgi-bin_cdrfb3_gsweb2.pdf1567KbAdobe PDF3236View/Open


    All items in CCUR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback