文化大學機構典藏 CCUR:Item 987654321/23850
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 46965/50831 (92%)
造访人次 : 12642506      在线人数 : 337
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于CCUR管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/23850


    题名: 應用詞頻以改良多元貝氏定理於文件分類之研究
    作者: 羅仁君
    贡献者: 資訊管理學系
    关键词: 多元貝氏定理
    multimembership Bayesian
    文件分類
    document classification
    文件自動分類
    automatic document classification
    基因演算法
    genetic algorithm
    日期: 2011
    上传时间: 2012-12-04 10:30:30 (UTC+8)
    摘要: 多元貝氏定理(multimembership Bayesian,簡稱MMB)近幾年曾運用於醫療、網站、郵件和文件的自動分類與推論,到目前MMB的在知識分類推論領域上的相關研究一直都持續進行著。而本研究是針對MMB文件自動分類提出以基因演算法為概念的改良方法,使用動態產生篩選門檻來達到真正完全的自動分類。
    以基因演算法為概念的MMB改良方式「自動調適篩選門檻」來提取重要字詞進行MMB分類,最後也以「自動評估」取得最佳結果。經實驗發現,當類別彼此差異度大時,最佳分類準確率為83.93%;類別彼此差異度小時,其分類準確率為70.60%。
    In recent years, multimembership Bayesian (MMB) has had a wide application for medical, website, E-mail and other document processing use the practices list above utilize the automatic classification and knowledge inference function of MMB to im-prove efficiency. Given MMB’s practicality and popularity across all walks of lives, the research around MMB remains a constant focus academically. To further improve the strength of MMB’s core automatic document classification function, our study proposes the additional application of genetic algorithm before traditional MMB.
    Based on the law of probability, the extra step of genetic algorithm helps develop the "automatic adaptable screening threshold" mathematically, thus with more accuracy. Such calculation pin-points the significant, frequently-used words to form the threshold for further MMB classification. Since the application of genetic algorithm acts as the in-itial screen, consequently, the extracted leftovers are more precise for any document classification. Further, based on the mathematic results, the threshold leads to automatic assessment, which selects the most desirable word choice automatically.
    The research presents significantly improved results. When class differences are relatively in large degree, its classification accuracy achieves 83.93%. Even when class differences are to a lesser extent, its classification accuracy rate of is able to reach 70.60%.
    显示于类别:[資訊管理學系暨資訊管理研究所 ] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    http___thesis.lib.pccu.edu.tw_cgi-bin_cdrfb3_gsweb1.pdf149KbAdobe PDF192检视/开启
    http___thesis.lib.pccu.edu.tw_cgi-bin_cdrfb3_gsweb2.pdf683KbAdobe PDF379检视/开启
    http___thesis.lib.pccu.edu.tw_cgi-bin_cdrfb3_gsweb3.pdf6271KbAdobe PDF889检视/开启


    在CCUR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈