文化大學機構典藏 CCUR:Item 987654321/23829
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 46965/50831 (92%)
Visitors : 12753011      Online Users : 504
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://irlib.pccu.edu.tw/handle/987654321/23829


    Title: 物流運籌e化建構與運用模式之研究
    Authors: 周承德
    Contributors: 資訊管理研究所碩士在職專班
    Keywords: 物流配送
    Logistics
    顧客價值
    Customer Value
    RFM分析法
    RFM Analysis
    RFT
    Date: 2012
    Issue Date: 2012-12-04 09:37:39 (UTC+8)
    Abstract: 隨著台灣無店舖行銷愈來愈發達,伴隨而來的是物流規模的擴大,而在商品配送方面,對大多數的業者而言,因規模不大,故一般都以委外配送居多。
    本研究是藉由資料探勘及價值分析的方式,對所研究案例進行績效評估。在評估顧客價值來說,以RFM最廣為企業所採用。本研究採用不轉換加權RFM值,針對車輛配送的特徵,將傳統的RFM模型,改為RFT分群,不採用一般所使用的平均數,而針對配送資料的特性(具單一值多且數值差異大),改採中位數來判斷三變數指標,再引用Marcus(1998)所提出的顧客價值矩陣,透過集群的方式,將車輛按照歷史交易資料快速分群,區分成不同的群別。對於各分群所配送產品相似度的以資料探勘的方式,可以得到較佳的推薦資訊。
    本研究是以探討第三方物流業者所面臨的配送問題為主要的研究目的,以產品、車輛、區域及時段等因素納入考量,提出一個決策模型,讓管理者對調整車輛調度的安排,能有一個適用的方案,以協助管理者進行相關配送決策的參考依據。

    With the non-store marketing more and more developed, the expansion of the logistics scale is accompanied. Due to the limited scale, the outsourcing distribution is the majority in distribution of goods.
    This study focus on the performance evaluation by using data mining and value analysis. In evaluating the customer value, RFM is the most popular method used by the enterprise. However, this study adopts non-weighted RFM value in connection with the vehicle distribution characteristics which uses RFT clustering instead of the original RFM model. Rather than using the statistics average, this study concentrate on vehicle distribution characteristics (with more than one single value and the value difference) and use statistics mid-value to determine the three RFM variables.
    This study use customer value matrix proposed by Marcus (1998) that throughs the clustering for dividing the vehicles into different groups by using the historical transaction information fast clustering. By using the data mining to analyze the similarity of the products which could get a better recommendation information.
    The study analysis the product, vehicle, region and time period to propose a decision model, so that the manager can have a program to adjust the vehicle scheduling arrangements and which can assist the manager to have a reference to make a decision for the distribution.
    Appears in Collections:[Department of Information Management & Graduate Institute of Information Management] Thesis

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML314View/Open


    All items in CCUR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback