English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46962/50828 (92%)
造訪人次 : 12410193      線上人數 : 1429
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/23827


    題名: 協同過濾推薦系統多樣性之研究
    作者: 張東勝
    貢獻者: 資訊管理研究所碩士在職專班
    關鍵詞: 推薦系統
    recommender system
    協同過濾
    collaborative filtering
    多樣性
    diversity
    日期: 2012
    上傳時間: 2012-12-04 09:33:33 (UTC+8)
    摘要: 全球電子商務網站運用推薦系統提供顧客可能感興趣的商品,其目的在於增加電子商務網站的商品銷售量,然而如果推薦項目之間太過於相似,使得顧客對推薦項目失去興趣,間接影響顧客忠誠度和電子商務網站銷售更多商品的機會。提供多樣性推薦項目的推薦系統是解決此問題的主要方法,產生多樣性推薦項目意指推薦能涵蓋顧客廣泛興趣且不相似的推薦項目。
    本研究提出的改善推薦清單多樣性的協同過濾推薦方法是分別於協同過濾推薦方法的「形成鄰居」步驟和「產生推薦清單」步驟置入多樣性影響因素,透過電影評分網站MoveiLens的電影評分資料庫進行驗證。本研究於「形成鄰居」步驟採用混合權重演算法找出高多樣性K位鄰居,再取得高多樣性K位鄰居預測目標使用者對每部電影項目的評分分數,然後將電影項目依照高評分分數至低評分分數排列;再於「產生推薦清單」步驟採用人氣項目排名方法、項目平均評分排名方法和項目絕對喜愛排名等三種方法,將電影項目重新排列,最後取得高多樣性電影項目清單。
    本研究選擇精確率、喚回率、F1-measure、個別多樣性和聚合多樣性準則進行評估推薦系統的品質。其實驗結果顯示於「形成鄰居」步驟置入多樣性影響因素會提高推薦系統的個別多樣性和聚合多樣性,但是,於「產生推薦清單」步驟置入多樣性影響因素只會提高聚合多樣性

    Global e-commerce sites use recommender systems to provide customers products who might be interested in, which aims to increase the sales opportunity, but if the recommendations are similar, so customers lose interest in the recommendations, indirect effects of customer loyalty and e-commerce website to sell more products. recommender system which provides diversity is the main method to solve this problem, the objectives of diversity means to cover the customer widespread interest and to provide more dissimilar recommendations.
    In this paper, we present a collaborative filtering approach to improve the diversity of the individual and aggregation, which is to place diversity of factors into the "for-mation of neighborhood" step and "produce recommended list" step. We use dataset from well known MovieLens to evaluate our model. We use hybrid weight method in the "to form a neighbor" step to find the most k neighbors of high diversity and then obtain the predicted rating value of every single movie items of the target users by the k neighbors. Then ranks movie items directly based on their predicted rating value from highest to lowest. We use Item Popularity、Item Average Rating and Item Absolute Likeability ranking method to re-rank the movie items.Finally we get a high diversity movie items list.
    Six Measures(precision, recall, F1-measure, individual diversity, aggregation di-versity and relative benefit) are used to evaluate the performance of the system. The experimental results that placing diversity of factors into the "formation of neighbor-hood" step can improve individual diversity and aggregation diversity, but placing di-versity of factors into the " produce recommended list " step can only improve aggrega-tion diversity.
    顯示於類別:[資訊管理學系暨資訊管理研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML303檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋