文化大學機構典藏 CCUR:Item 987654321/23824
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 46962/50828 (92%)
Visitors : 12422800      Online Users : 609
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://irlib.pccu.edu.tw/handle/987654321/23824


    Title: 運用內容過濾之個人化古典音樂推薦
    Authors: 王淑美
    Contributors: 資訊管理研究所碩士在職專班
    Keywords: 內容過濾
    Content-Based Filtering
    個人化推薦系統
    Personalized
    音樂推薦
    Classical Music Recommendation
    Date: 2012
    Issue Date: 2012-12-04 09:28:40 (UTC+8)
    Abstract: 聲音的發送在時空中歷經數十載的傳遞仍舊存在,音樂依舊在生活中佔著不可或缺的地位,隨著網際網路及智慧型手機的線上收聽或下載音樂盛行時,廣播以網路或手機的形態存在,網路電台透過網路向全世界發聲,而該如何藉由推薦系統的強大功能,從大量的資料中,根據使用者的歷史興趣資料,找出使用者的喜好,推薦給使用者感興趣的音樂呢?

    「資料探勘」的定義就是從大型資料庫中發現知識,將隱含的、先前並不知道的、潛在有用的資訊從資料庫中粹取出來的過程(楊昇宏,2000)。在大量的音樂資訊中,如何快速找到使用者會喜歡的音樂?為了解決新資源或是新使用者的冷啟動(Cold-start)問題,本研究利用「內容推薦」以及「資料探勘」中「決策樹」、「貝式網路」,及「類神經網路」的技術。不管是新曲目或是原來的曲目,從預測使用者對新曲目的喜好開始,僅需少量的使用者資料,就可以推薦一首使用者可能沒聽過,但是會喜歡的曲目。利用「內容推薦」及「資料探勘」的特性,更能有效達到預測的目的。
    The distribution of sound has been existent for dozens of years. Even nowadays, radio broadcast still plays an indispensable role in our daily lives. With the prevalence of listening to music or downloading music on the Internet, radio broadcast has existed in the form of an Internet medium. Internet radio stations broadcast sound and music to the world. With the aid of a music recommendation system, how should they pick music from a large database and according to the historic preference of users and recommend it?

    Data mining is a process of discovering knowledge from large databases and
    ex-tracting underlying, unknown, and potentially useful information from these data-bases (Yang, San-Hung, 2000). How to efficiently locate the music that users prefer among the tremendous music databases? For solving the problems of "new resources" and "cold start for new users", this research used theories of Content-Based Filtering, Data Mining (including Decision Tree, Bayesian Network and Neural Networks). Whether new or old materials, starting from the prediction the music preference from new users, and it takes only few user information to recommend a song that user never heard but may appreciate. Utilize the specifics of " Content-Based Filtering " and "Data Mining", can efficiently reach the goal of prediction.
    Appears in Collections:[Department of Information Management & Graduate Institute of Information Management] Thesis

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML314View/Open


    All items in CCUR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback