English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 47225/51091 (92%)
造訪人次 : 13998750      線上人數 : 267
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/23769


    題名: 運用支援向量機於企業財務危機之研究
    作者: 何秉劼
    貢獻者: 會計學系
    關鍵詞: 財務危機
    Financial Distress
    支援向量機
    Support Vector Machine
    最小平方法支援向量機
    Least Squares Support Vector Machine
    區別分析
    Discriminant Analysis
    t檢定
    t-test
    因素分析
    Factor Analysis
    日期: 2012
    上傳時間: 2012-11-20 10:19:49 (UTC+8)
    摘要: 企業財務危機分類模型一直是熱門研究議題,從早期傳統統計方法來建立模型,時至今日已經有大量的人工智慧演算法所建立的模型出現。而「支援向量機」與「最小平方法支援向量機」是現今較新穎的人工智演算法,究竟兩種方法在企業財務危機分類的診斷上有何差異?本研究嘗試建立此兩種方法之企業財務危機分類模型並比較差異,另外再以區別分析、t檢定與因素分析來相結合,以建立一個二階段的財務危機分類模型,並探討結合上述變數篩選方法所建立的模型之分類績效差異。
    此研究以2001年至2011年底台灣非金融業之上市及上櫃公司為樣本,取財務比率、智慧資本和公司治理指標資料來建立企業財務危機分類模型。
    本研究發現,以t檢定先進行變數篩選後,將有助於提升模型的整體分類績效。另外,在「支援向量機」和「最小平方法支援向量機」所分別建立的財務危機分類模型中,各組模型的分類績效並無明顯差異。此研究結果希望能提供日後學者在建立財務危機分類模型時能當參考之用。

    Many previous studies have examined classification models for enterprise financial distress. While earlier models were built using traditional statistical methods, other machine learning algorithms are being used for building models nowadays. Support Vector Machine (SVM) and Least Squares Support Vector Machine (LS-SVM) are relatively new machine learning algorithms. How are they different? This study builds two classification models for financial distress using these two methods and compares the differences between them. This study also combines discriminant analysis, t-test, and factor analysis with SVM and LS-SVM to build a two-step classification model of enterprise financial distress and discusses the predictive performance of the models built using the abovementioned feature selection methods.
    The sample includes listed and OTC companies in Taiwan, which were observed during the period 2001–2011. The study uses financial ratios, index of intellectual capital, and corporate governance for building the models.
    It was found that models based on feature selection by t-test could forecast enterprise financial distress more accurately, and both SVM and LS-SVM had similar classified ability for building prediction models of financial distress. These findings could be useful for future studies.
    顯示於類別:[會計學系暨研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML378檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋