文化大學機構典藏 CCUR:Item 987654321/23360
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 46965/50831 (92%)
Visitors : 12752474      Online Users : 520
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://irlib.pccu.edu.tw/handle/987654321/23360


    Title: 應用細胞自動機模擬大台北地區都市擴張
    Authors: 陳芃妤
    Contributors: 地學研究所地理組
    Keywords: 地理模擬
    Geosimulation
    細胞自動機
    Cellular Automata
    都市擴張
    Urban Expansion
    SLEUTH模式
    SLEUTH
    Date: 2012
    Issue Date: 2012-10-18 09:40:03 (UTC+8)
    Abstract: 政府規劃各種都市計劃政策時,考量許多不同影響都市擴張的因素,往往深深影響著都市未來的發展。然而政策影響都市擴張涵蓋的面向非常廣泛,一個良好的政策制定時,必須審慎考量所影響都市發展的因素,在決策前先對政策影響層面進行模擬,以獲得較好的區域發展效益。近年來地理模擬(Geosimulation)技術的發展,可對複雜的地理現象進行模擬、預測並顯示結果,研究都市擴張模擬,細胞自動機(Cellular Automata, CA)是許多學者常用的工具之一。而SLEUTH模式是基於細胞自動機理論所發展的都市擴張模擬模式,近年來廣泛應用在許多研究當中,並獲得不錯的模擬結果。
    本研究為了瞭解政策對都市擴張之影響,以大台北地區為研究範圍,利用SLEUTH模式進行都市擴張模擬,將行政區合併、交通建設與環境敏感地限制發展三種不同政策面向進行模擬預測。本研究首先對模式預測成果進行評估,將模式預測成果與實際情況進行Kappa統計分析,得到模式預測精度達88.68%,證明應用SLEUTH模式於大台北地區進行都市擴張模擬是有效的工具。
    在政策模擬中,行政區組合包含新北市的模擬成果,都市皆呈現明顯的擴張,規劃行政區合併政策時,新北市應列為重要考慮的對象。交通建設模擬部分,都市受交通建設新增的影響,都市分佈型態較緊密,都市成長較快速,且隨著道路等級越高,道路引力擴張影響越大。在環境敏感地限制發展模擬中,都市發展受到限制,擴張型態以蔓延式擴張為主,都市成長較緩慢。都市擴張模擬中,考慮不同政策面向對都市未來擴張情況進行預測,使決策者制定政策時,能對政策影響層面有更進一步的了解,將有助於政策之決定。

    Broad ranges of urban planning policy factors affect urban expansion. Considering many different factors of urban expansion, various Government policies will deeply affect the future city development. Before making a good policy decision, government should consider the factors affecting urban development and simulate of the influence on the policy in order to obtain better benefits for regional development. In recent years, new Geosimulation technology can simulate complex geographical phenomena, make predictions and display the urban growth simulation results. To study the simulation of urban expansion, Cellular Automata (CA) is a popular method in geographic simulation, and in many cases, The SLEUTH urban growth simulation model, based on the CA theory, has been shown to achieve good simulation results.
    In this study, in order to understand the impact of policy on urban growth, the SLEUTH model was applied in greater Taipei, considered three different types of policy: region consolidation, transportation and environmental sensitivity, and simulate the future urban growth. Kappa statistical analysis method was used to exam the predicted result with the actual situation, and the model reaches 88.68% of prediction accuracy. It shows that SLEUTH is an effective tool for simulating urban growth in greater Taipei.
    After the study, the simulated result of region consolidation case shows that region consolidation of the combination with New Taipei City urban growth is faster. When planning the region consolidation policy, one should seriously consider including in New Taipei City. In the transportation case, when new transportation policy is applied, the urban growth type is more close, the speed of the urban growth becomes faster, and the higher level of road, the road gravity influenced urban growth is more important. In the environmentally sensitive simulation case, city development is limited and city growth is slower. In the future, before make a decision, policy makers should carry on simulation of urban expansion, and try to understand the influence of different policies on urban expansion, which will help lead to better policies.
    Appears in Collections:[Department of Geography & Graduate Institute of Earth Science / Geography ] thesis

    Files in This Item:

    File Description SizeFormat
    gsweb638.pdf10556KbAdobe PDF934View/Open


    All items in CCUR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback