English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 47126/50992 (92%)
造訪人次 : 13854652      線上人數 : 246
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/22917


    題名: Information disclosure prediction using a combined rough set theory and random forests approach
    作者: Chi, Der-Jang
    Yeh, Ching-Chiang
    貢獻者: 會計系
    關鍵詞: FIRM
    FEATURE-SELECTION
    DETERMINANTS
    MARKETS
    日期: 2011-11-23
    上傳時間: 2012-09-04 11:29:35 (UTC+8)
    摘要: In recent years, corporate disclosure and transparency analysis has been of interest in the academic and business community. The objective of this study is to increase the accuracy of information disclosure prediction by combining rough set theory (RST) and random forests (RF) technique, while adopting corporate governance as predictive variables. The effectiveness of this methodology has been verified by experiments comparing RF model. The sample is based on 580 Taiwan information technology (IT) firm in 2007. The results show that the proposed model provides better prediction results and corporate governance does provide valuable information in information disclosure prediction model.
    關聯: AFRICAN JOURNAL OF BUSINESS MANAGEMENT Volume: 5 Issue: 29 Pages: 11599-11606
    顯示於類別:[會計學系暨研究所 ] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML453檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋