English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46867/50733 (92%)
造訪人次 : 11872617      線上人數 : 393
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/22796


    題名: Tourist Arrival Forecasting Using Adaptive Fuzzy Network
    以可適性模糊網路預測觀光客人數之研究
    作者: 江曉綺
    貢獻者: 商學院
    關鍵詞: 可適性模糊網路
    觀光業
    預測
    學習演算法
    Adaptive fuzzy network
    Tourism
    Forecast
    Learning algorithm
    日期: 2007-06
    上傳時間: 2012-08-07 13:14:20 (UTC+8)
    摘要: 國際觀光業是世界最大及成長最快速的產業,由於觀光產業的產品與服務具有無法保存的特性,因此如果能準確預測國際觀光客人數便可對觀光產品、服務的提供及基本的設施做成功的規劃以增加經濟利益。因此本研究提出一個新的預測工具,即是使用以Widrow-Hoff學習演算法為基礎的可適性模糊網路來建立一個預測的模式,並據以預測來台的日本與美國觀光客人數,其預測結果可以達到非常不錯的準確度,因此可證實此研究所建立之模式是一個具有良好預測能力的模式,並可作為觀光產業決策者與管理者在觀光產品及設施規劃上的重要參考。
    International tourism has become one of the largest and most rapidly growing industries in the world. Since there exists the perishable nature of the product and service in the tourism industry, it is crucial to have an accurate forecast of its international visitors and tourism receipts in order to choose an appropriate strategy for its economic benefits. In this paper, a new approach is proposed and that is a fully connected adaptive fuzzy network (AFN) based on Widrow-Hoff learning algorithm to model and forecast the tourist arrivals for the travel of international visitors to Taiwan. And the difference between the expected and the forecast output values falls into a very acceptable range of discrepancies, which means that using the adaptive fuzzy network has reached the required level of accuracy. The result is in good accord with the monitored data and allows its use as the forecasting model to help policy makers and managers of tourism industry to develop planning for various tourism activities.
    關聯: 文大商管學報 (12卷1期) :p187 -206
    顯示於類別:[商學院] 學報-文大商管學報

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML606檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋