文化大學機構典藏 CCUR:Item 987654321/22278
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 47250/51116 (92%)
Visitors : 14627612      Online Users : 393
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://irlib.pccu.edu.tw/handle/987654321/22278


    Title: Convergence of the Ishikawa Iteration Process for Nonexpansive Mappings in Hyperspace
    超空間上非擴張函數的石川氏迭代收歛定理
    Authors: 王永成(Weng-Seng Heng)
    Contributors: 理學院
    Keywords: 石川氏迭代
    非擴張函數
    Hausdorff距離
    超空間
    Ishikawa Iteration
    Nonexpansive Mappings
    Hausdorff Metric
    Hyperspace
    Date: 2003
    Issue Date: 2012-05-14 11:17:04 (UTC+8)
    Abstract: 設X為賦距線性空間,KC(X)為X上所有非空緊緻的凸子集所成的集合,而א為KC(X).的子集,且T:א→KC(X)為非擴張映射。設{Xn}為א上的序列且{tn}為實序列,滿足下列:
    (i)運算式略
    (ii)運算式略
    若{Xn}為有異,則limh(TXn,Xn)=0.
    上述定理推廣了石川氏的結果。
    Let X be a metric linear space, KC(X) is the collection of all nonempty, compact, convex subsets of X and א be a subset of KC(X). Suppose that T:א→KC(X) be a noncxpansive mapping. Given a sequence [Xn] in א and a recl scquences {tn} satisfying
    (i) 運算式略
    (ii)運算式略
    If {Xn} is bounded then lim h(THn, Xn)=0.
    The theorem generalize the result obtained by Ishikawa.
    Relation: 華岡理科學報 ; 20 期 (2003 / 05 / 01) , P175 - 182
    Appears in Collections:[College of Science] Hwa Kang Journal of Sciences

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML772View/Open


    All items in CCUR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback