文化大學機構典藏 CCUR:Item 987654321/22273
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 46965/50831 (92%)
Visitors : 12647630      Online Users : 591
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://irlib.pccu.edu.tw/handle/987654321/22273


    Title: A Property of the Commutator Ideal of a Finitely Generated Metabelian D-group
    有限生成亞交換可除群的交換子理想
    Authors: 傅清芬(Ching-Fen Fuh)
    Contributors: 理學院
    Keywords: 亞交換群
    可除群
    唯一根
    交換子理想
    子可除群
    Metabelian group
    D-group
    unique roots
    commutator ideal
    sub-D-group
    Date: 2004
    Issue Date: 2012-05-14 10:53:26 (UTC+8)
    Abstract: 一個群G 其每一個元素都有唯一的n 次方根,n 為任意正整數,則G 稱為可除群(D-group)。若其導出子群[G ,G] 為可交換的,則稱G為亞交換群。並非每個子群都是一個可除群,若一個子群是可除群,我們稱之為子可除群(sub-D-group),而G 的交換子理想(commutator ideal)則是在G中包含其導出群的最小子可除群,我們發現當G是一個有限生成亞交換可除群時,其交換子理想是一個有限生成模。
    A D-group is a group G with the property that, for every element g in G and every positive integer n,g has a unique nth root in G. G is termed metabelian if its commutator subgroup ] , [ G G is abelian. Not every subgroup of a D-group is also a D-group. If a subgroup is a D-group we call the subgroup “sub- D -group.” The “commutator ideal” of G is the smallest sub-D-group containing its commutator subgroup. We found that the commutator ideal can be viewed as a finitely generated module over a ring when G is a finitely generated metabelian D-group.
    Relation: 華岡理科學報 ; 21 期 (2004 / 05 / 01) , P157 - 167
    Appears in Collections:[College of Science] Hwa Kang Journal of Sciences

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML767View/Open


    All items in CCUR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback