English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 47184/51050 (92%)
造訪人次 : 13958973      線上人數 : 273
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/22272


    題名: The Covariance Structure of Variogram Estimators for One Dimensional Processes
    一維隨機場之偏差估計量的共變異量結構研究
    作者: 呂岡玶(Kang-Ping Lu)
    張少同(Shao-Tung Chang)
    貢獻者: 理學院
    關鍵詞: 地球統計學
    樣本半偏差
    Wiener Process
    Geostatistics
    Sample Semivariogram
    Wiener Process
    日期: 2004
    上傳時間: 2012-05-14 10:50:33 (UTC+8)
    摘要: 此篇論文中我們先導出滿足內部平穩性之一維高斯隨機場樣本半偏差聯合分佈的二階動差‧進而根據大部分常用半偏差模型皆滿足的極限條件下,推導樣本半偏差聯合分佈之共變量極限結構‧我們將此結果應用於三種常用的模型:(1)the pure nugget effect model;(2)線性半偏差模型;(3)半偏差在一固定距離後維持一常數(finite range process)‧第一種模型相當於所謂的white noise process,第二種相當於Wiener process,而第三種則為finite-range transition phenomena. 論文中我們分別探討在此三種模型下,樣本半偏差共變量極限結構不同的特點。
    The second-order moments of the joint distribution of the sample semivariogram are derived, assuming an underlying intrinsically stationary, Gaussian, one-dimensional random field. In addition, the asymptotic covariance structure of the sample semivariogram is derived under a certain asymptotic regime. The results are specialized to three important cases: (1) the pure nugget effect model; (2) the linear semivariogram model; and (3) a semivariogram whose sill is equal to the process variance and is attained at a finite distance. The first case corresponds to a white noise process, the second case corresponds to a Wiener process (possibly plus independent white noise), and the third case corresponds to processes called finite-range transition phenomena. Some salient differences in the sample semivariogram’s asymptotic covariance structure are noted for these processes.
    關聯: 華岡理科學報 ; 21 期 (2004 / 05 / 01) , P143 - 156
    顯示於類別:[理學院] 學報-華岡理科學報

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML786檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋