English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 46962/50828 (92%)
造訪人次 : 12457830      線上人數 : 630
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於CCUR管理 到手機版


    請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/22227


    題名: A Hebbian-Based Neural Network for Principal Components Analysis
    作者: 戴文彬
    貢獻者: 工學院
    關鍵詞: 類神經網路
    主成分分析
    神經元自知調節
    Neural Networks
    Principal Components Analysis
    Self-Regulation
    日期: 2002-06-01
    上傳時間: 2012-05-09 15:08:10 (UTC+8)
    摘要: 本論文中,我們提出一個新的Hebbian-based類神經網路學習模型,並將其應用於解決資料特徵分析時的主成分分析問題。這個類神經網路的基本觀念,是利用神經元自知調節的運作方式,達到整體學習的結果。依此觀念,我們推導出新的學習演算法則,並進一步有效地解決了空間分解中的主成分分析問題,及其相關應用。

    In this paper, we propose a new learning paradigm of neural network and apply it to solve the subspace decomposition problem for principal components analysis. In this proposed network, each neuron learns about the environment through a process of Hebbian-based self-regulation which actively controls the neuron's own learning by perceiving its status in overall learning effectiveness. Based on this concept of self-regulation, we derive the primary learning rules of the synaptic adaptation in the network. The Hebbian-based self-regulative neural network is utilized to explore significant features of the environment data in an unsupervised way and to implement subspace decomposition of the data space. Numerical simulations demonstrate the efficiency of the learning model and verify the practicability of the concept of individual neuronal self-regulation for learning control.
    關聯: 華岡工程學報 16期 p.97 -109
    顯示於類別:[工學院] 學報-華岡工程學報

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML443檢視/開啟


    在CCUR中所有的資料項目都受到原著作權保護.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋