文化大學機構典藏 CCUR:Item 987654321/22223
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 47249/51115 (92%)
Visitors : 14134694      Online Users : 570
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://irlib.pccu.edu.tw/handle/987654321/22223


    Title: On the Effectiveness of Integrating Probabilistic Neural Networks with Influence Diagrams
    Other Titles: 論整合神經網路和影響圖的效能
    Authors: 曾敏烈
    Contributors: 工學院
    Keywords: neural networks
    influence diagrams
    complexity
    Date: 2002-06-01
    Issue Date: 2012-05-09 14:53:22 (UTC+8)
    Abstract: 眾所皆知,神經網路(Neural Networks)具有良好的學習能力、錯誤容忍力、以及大量的平行處理能力;但是,欠缺推論和解釋能力。本研究旨在結合影響圖(Influence Diagrams)的經濟、效率和彈性,爲神經網路提供較接近人類的推論和解釋能力。特別是,此整合網路在降低神經網路結構複雜性和推論上的複雜性(Complexity),具有很好的效能。

    Although neural networks indeed offer important new approaches to information processing, it is now a general trend to incorporate conventional computer methodologies for inferences and explanations in the hope of getting closer to human performance. In this study, we propose influence diagrams as a means of not only providing probabilistic inference but also reducing system complexity.
    Relation: 華岡工程學報 16期 p.27 -53
    Appears in Collections:[College of Engineering] Chinese Culture University Hwa Kang Journal of Engineering

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML704View/Open


    All items in CCUR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback