摘要: | 子計畫二將根據總計畫之雲端運算通用型預測系統發展藍圖,利用可延展標記語言(XML)、網路服務(Web Services)、服務導向架構(SOA)及新興的雲端運算等技術,設計與實作一個「應用雲端運算之通用型設備監控資訊平台」(簡稱,雲端運算通用設備監控平台),以作為整體計畫之運作平台。首先,本子計畫將針對雲端運算通用設備監控平台之特性與系統需求進行深入研究與分析,並將研究與建立相關之實現技術和知識。接著,我們將進行雲端運算通用設備監控平台之架構(Framework)設計,以及完成各類網頁化監控及管理圖形使用者界面之規劃與設計。其次,本子計畫將進行雲端運算通用設備監控平台相關功能之設計與實作,包括通用型資料擷取模組、設備監控雲端運算服務、資料安全保護機制、網頁化監控及管理圖控界面等,並完成雲端運算通用設備監控平台範例之建構,以及在模擬環境下之整合測試。最後,我們將採用服務導向架構(SOA),進行與總計畫暨其他子計畫之全系統整合與實際上線測試,並完成系統效能評估與比較。預期子計畫一所發展之各式通用型預測架構,以及子計畫三所發展之各類智慧型機台預診服務,可以配合本子計畫所發展的雲端運算通用設備監控平台置於雲端,以便按需提供顧客各類良率預測、精度預測、機台預測保養所須之剩餘壽命預測等之用。相信本子計畫之研發成果具有技術的新穎性與產業的利用性,為建構雲端運算通用型預測系統重要的參考。子計畫二之研究子題與時程規劃如下:第一年:完成「應用雲端運算之通用型設備監控資訊平台」之整體需求分析與架構設計 1) 研究及分析雲端運算之特性、功能與需求 2) 研究及分析通用型設備監控資訊平台之特性、功能與需求 3) 研究並獲得建構雲端運算通用設備監控平台所需之實現技術與知識 4) 完成雲端運算通用設備監控平台之架構設計 5) 網頁式監控及管理圖形使用者介面之需求分析與規劃第二年:建構「應用雲端運算之通用型設備監控資訊平台」及完成在模擬環境下之整合測試 6) 設計與實作通用型設備資料擷取模組 7) 設計與實作設備監控雲端運算服務 8) 設計與實作資料安全保護機制 9) 設計與實作網頁式監控及管理圖形使用者介面 10) 建構雲端運算通用設備監控平台範例暨完成模擬環境下之整合測試。第三年:完成系統整合與實際上線測試 11) 進行與通用型預測架構(子計畫一)之整合與測試 12) 進行與智慧型機台預防診斷服務機制(子計畫三)之整合與測試 13) 完成雲端運算通用型預測系統之全系統整合 14) 實際上線測試及完成性能評估與比較。
According to the development blueprint of the generic prediction system based on cloud computing drawn by the main project, the sub-project 2 will utilize various network and IT technologies, such as XML, Web Services, SOA, and the emerging cloud computing (CC), to design and implement a generic equipment monitoring information platform based on cloud computing, called CC-based GEMIP, which will be the operational platform for the whole project. First, the sub-project 2 will thoroughly investigate and analyze the properties and system requirements of the CC-based GEMIP. Also, the related implementation technologies and knowledge will be studied and created. Then, the framework of the CC-based GEMIP will be designed, and various Web-based graphical user interfaces (WGUIs) for monitoring and management operations will be drawn up and designed. Next, the sub-project 2 will design and implement the functional components of the CC-based GEMIP, including the generic data acquisition module (GDAM), cloud computing services for equipment monitoring, data security protection mechanism, and the WGUIs for monitoring and management. Also, a paradigm CC-based GEMIP will be constructed, and the integrated tests will be accomplished in a simulated environment. Finally, the service-oriented architecture (SOA) will be adopted to integrate the sub-project 2, the main project, and other sub-projects. Besides, the on-line tests as well as the performance and effectiveness evaluations of the CC-based GEMIP will completed. It is expected that the generic prediction scheme developed by sub-project 1 and the various intelligent equipment prognostics services developed by sub-project 3 can be placed on the cloud through the CC-based GEMIP developed by the sub-project 2. Then, the customers and end users can access these cloud computing services on demand for the purposes of yield prediction, precision prediction, the remaining useful life (RUL) prediction for predictive maintenance, and so on. It is believed that the research results of this sub-project possess technical novelty and industrial applicability and can be important references for constructing generic prediction systems based on cloud computing. |