摘要: | 本研究計畫將開發再生性的胺基修飾燻矽固體吸收劑,並用以吸收煙道氣中的二氧化碳。計畫第一年首先以化學表面改質方法進行燻矽載體表面改質,再以含浸法分別將各級醇胺(Monoethanolamine, Diisopropanolamine, N-Methyldiethanolamine, Triethanolamine) 、立體障礙醇胺(2-Amino-2-methyl- 1-propanol)、以及聚乙烯亞胺(Polyethyleneimine)負載於燻矽固體表面,探討載體前處理改質方法、吸收劑製備程序參數,對吸收劑表面官能基特徵與物理結構的影響,並先以熱重分析氣固反應系統評估固體吸收劑的熱穩定性以及在特定反應條件下對CO2 的捕捉能力,藉以得到吸收劑的最佳成分組成與製備條件。再者,分析吸收劑之CO2 捕捉率隨反應溫度、溼度以及反應時間變化的情形,找出試樣吸收CO2 之可行操作條件與再生條件之範圍。煙道氣經過空氣污染防制設備後,仍含有少量的氧氣、二氧化硫和氮氧化物,這些物質可能會影響固體吸收劑吸收二氧化碳的能力和再生利用的壽命。因此,計畫第二年將針對所製得高效能的胺基修飾燻矽固體吸收劑,探討在低溫、潤濕的煙道氣狀況下氧氣、二氧化硫和氮氧化物對吸收劑吸收二氧化碳的影響,以找出使用此種固體吸收劑吸收煙道氣中二氧化碳時,可行的操作條件(溫度、溼度、二氧化硫與氮氧化物的濃度及反應時間)之範圍。本研究的結果將有助於胺基修飾燻矽固體吸收劑之開發,並可作為後續的二氧化碳吸收設備和程序設計之基礎資料。
This project is to develop a regenerative amino-modified silica fume solid sorbent for the absorption of CO2 in flue gas. In the first year, the various alkanolamines will be respectively supported on the surface-modified silica fume particles by the impregnation method. The effects of the support pretreatment process and sorbent preparation parameters on the characteristics of surface functionality and physical structure of the sorbent will be studied. The thermal stabilities and CO2 capture capacities of the prepared sorbents will be evaluated using the TGA gas-solid reaction apparatus. The best component and composition of the solid sorbent and its optimal preparation conditions will be determined. Moreover, the dependency of the reaction conditions (temperature, humidity, and reaction time) on the CO2 capture capacities will be analyzed to find out the feasible sorbent operation and regenerated parameters for the CO2 absorption process. The flue gas after the air pollution control units still contains low amounts of O2, SO2 and NOx, which might be absorbed or reactive to the solid sorbent. Therefore, the CO2 capture capacity and the lifespan of amino-modified silica fume solid sorbent may be affected by the presence of SO2 and NOx in the flue gas. Thus, in the second year, the effects of O2, SO2 and NOx on the CO2 absorption of the prepared high-performance sorbents under humid and low temperature conditions will be studied, with the aim to find the feasible ranges of the operating conditions (reaction temperature, relative humidity, SO2 concentration, NOx concentration, and reaction time) for using these sorbents to absorb CO2 in the flue gas. The results of this research may contribute to the development of amino-modified silica fume solid sorbents, and could be the basic data for further design of the CO2 absorption process. |