摘要: | 奈米轉印技術已經在各國間引起高度重視,也是下世代奈米製造之新興技術,具有成本低、高產能等特色下,可以應用於多項關鍵領域,包含奈米電子、光電、顯示器、資料儲存和生醫領域等,有鑑於奈米轉印在對準技術的精準度無法突破奈米等級,加上近年來週期性的結構在表面電漿效應的蓬勃發展,使得週期性奈米圖案的需求刻不容緩,為了有效降低轉印模仁製作成本並且提高轉印技術之應用性,發展週期性奈米轉印模仁技術確實有其必要性,將此週期性模仁技術應用於表面電漿子結構製作,並且探討週期性奈米金屬結構的表面電漿特性,有助於國內在奈米光學元件、生物感測晶片、或奈米微影技術之發展。本子計畫為三年計畫「發展週期性奈米轉印模仁技術於表面電漿子結構特性之研究」。第一年開發AAO 奈米孔洞之模仁技術及建構奈米金屬狹縫與粒/柱結構之FDTD 模擬;第二年開發將應用氧化鋅奈米柱之模仁技術、奈米球微影之模仁技術及建構奈米金屬孔洞結構之FDTD 模擬;第三年開發二極體雷射干涉微影法之模仁技術及FDTD 模擬設計表面電漿之奈米光學元件或生物感測晶片。發展低成本、大面積、週期性奈米轉印模仁技術,利用開發之週期性奈米轉印模仁進行熱壓成型及紫外光硬化成型奈米轉印,完成週期性奈米金屬結構之製備;由於週期性奈米金屬結構組成的微型陣列,有相當潛力可以應用在非標定、高通量、晶片型態的表面電漿感測上,利用模擬軟體探討週期性之奈米夾縫、奈米孔洞與奈米柱金屬結構在可見光波段照射下的表面電漿共振與侷域場增強現象,完成表面電漿元件之製作,期望對於奈米製造技術及表面電漿子學有所貢獻。
The Nanoimprint Lithography (NIL) has been gradually emphasized among many countries. It’s an emerging technique of nanofabrication because of its high productivity and low cost. It can be used in many fields, such as nano-electron, electro-optic, displays, storage, biology, and so on. Owing to precision of alignment in nano-scale is hard to transcend, and the surface plasmonic periodic structure is popular in recent years, so how to fabricate the nano periodic patterns is important. In order to decrease the cost of the fabrication of transfer molds and increase the utility of nanoimprint lithography, developing the nano periodic structure of transfer molds become important. We think that through combining the periodic structure and surface plasmon, further discuss the surface plasmonic structure will benefit the developing of optical devices, bio-sensors, and nanoimprint lithography in our country. This three years project is called “Development of the period mold on nanoimprint lithography to apply to the surface plasmon”. The first year we will develop the technique of AAO nano hole and fabricate the simulate environment to simulate nano cavity by FDTD method. The second year is concentrating on the nano molds of ZnO pillar, nanosphere lithography, and simulation of nano hole. In the third year, we will develop to fabricate transfer mold by the interfere of diode laser and simulate/design surface plasmonic optical device and bio-sensor. As above mentioned, through thermal and UV nanoimprint lithography, we can finish the nano periodic metal structure as low cost, big area and periodic transfer mold. Because of the composing of nano periodic metal structure is high potential, so it can be used in the surface plasmonic sensor of non-demarcate and high-flux. Through simulating, we can discuss the surface plasmon phenomenon and near-field enhancement in visible light of nano cavity, nano hole, and nano pillar. Further, finishing the fabrication of surface plasmonic structure. Hope it will have lots of contribution of nano fabrication and surface plasmon. |