文化大學機構典藏 CCUR:Item 987654321/20344
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 46965/50831 (92%)
造访人次 : 12636862      在线人数 : 572
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于CCUR管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://irlib.pccu.edu.tw/handle/987654321/20344


    题名: 運用集成學習分類法於白血病腫瘤基因之研究
    作者: 趙李英記
    贡献者: 資訊管理學系
    关键词: K 最近鄰居分類
    支持向量機
    貝氏分類法
    冗餘度分析法
    留一交叉驗證法
    日期: 2010
    上传时间: 2011-11-14 13:29:38 (UTC+8)
    摘要: 癌症已經連續多年高居國人十大死因的首位,但一般癌症發
    現時期均屬癌症末期,此時外科手術已經到了很難治癒的階段。
    早期發現輕微徵兆的癌症,傳統病理學家可以依腫瘤的形態學加
    以分類,但這種分類方法對於某些組織晚期其病理形態相類似,
    對於癌症的病程和預後已經是各自迥異,無法加以有效的區分。
    迄今,分子診斷所利用的基因晶片,可以對數以萬計的基因在不
    同組織表現去進行跟蹤監測,有助於腫瘤組織的鑑別分類和新病
    型的發現。本研究利用資料探勘技術來說明在腫瘤上的處理步
    驟,資料獲得後所經過的資料預處理,再做基因排序特徵減縮,
    接著以當前性能較好的四種分類方法: 如KNN 法、支持向量機
    法、貝氏分類法、以及冗餘度分析法,對它們進行了集成學習分
    類法研究,實驗結果顯示集成分類法是當前分類結果較為穩定,
    準確度較高及性能較好的ㄧ種方法。
    Cancer has been ranked on the top one cause of death for many years. Currently
    most cases of cancer are not discovered until the latter stages because it usually causes
    no symptoms. Surgery is especially important in the early stages of cancer development
    but not the final stage. The traditional tumor morphology is classified by pathologist on
    the approach that is for some organisms in the early stages of cancer development.
    However, this classification method cannot effectively discriminate terminal cancer that
    has similar pathological appearance but different course and prognosis. Today, gene
    chips, an important means of molecular diagnosis, can be used to track and monitor
    large data sets covering the expression of thousands of genes over a wide range of different
    organisms’ tissues/samples. It can not only facilitate in tumor classification but
    also discover in new disease identification. Applying data mining techniques for Leukemia
    classification from gene expression data through a serial of process are
    pre-processing, feature reduction and gene ranking.
    Four classification methods-KNN, SVM, Naïve Bayes’ and RDA, were implemented
    and compared in this research. Experimental result of this research indicates that
    Ensemble Approach create a better and stable performance in term of prediction precision.
    显示于类别:[資訊管理學系暨資訊管理研究所 ] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML234检视/开启


    在CCUR中所有的数据项都受到原著作权保护.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈